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INVESTIGATION OF COMPLEX ANGLE PROCESSING
TO REDUCE INDUCED ANGLE POINTING ERRORS

David G. Burks and Edward R. Graf

Abstract

This work is an analysis of the effect of a tangent ogive radome on

the pointing accuracy of a monopulse radar that employs an aperture an-

tenna. The radar is assumed to be operating in the receive mode and

the incident fields at the antenna are found by a ray-tracing procedure.

Rays that enter the antenna aperture by direct transmission through the

radome and by single reflection from the radome interior are considered.

The theory of monopulse radar and the transmission and reflection

properties of planar dielectric slabs are presented first to form a back-

ground for the radome analysis.

Two orthogonal polarization states which can be combined to pro-

duce an arbitrarily polarized incident field are considered. The anten-

na can be scanned in two angular directions and radar pointing error is

presented for both these angles as a function of antenna scan angle

J and polarization of the incident field. Throughout the work, compari-

son of two different radome wall designs is made in order to both il-

lustrate the analytical techniques and to show the engineering trade-

offs in radone design.i
A method that can be used to compensate for radome-induced error

is presented. Complex angle processing for the purpose of pointing

angle reduction was investigated based upon the simulation described
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above. It was concluded that the complex angle could not be uniquely

related to radar pointing error, but rather appeared to correlate

with phase-front curvature. This quantity is not considered useful for

pointing error correction.

v



ACKNOWLEDGEMENTS

Special thanks are due to Mike Fahey of the U.S. Army Missile R & D

Coand for Initially suggesting the topic of this research and for pro-

viding continued interest and support throughout.

I would like to thank the staff of the Antenna Laboratory at

Texas Instruments, especially Phil Green and Don Purinton, for an

extremely valuable introduction to radomes during the Summer that I was

employed there before beginning this work.

i

I v



Table of Contents

LIST OF FIGURES ....... .. ........................... viii

LIST OF TABLES ...... ... ........................... xii

I. INTRODUCTION ...... .. ....................... . ..

II. FUNDAMENTAL FACTORS IN RADOME ANALYSIS ..... ............ 8

Monopulse Radar
Tangent Ogive Radome Geometry
Transmission and Reflection Properties of Planar Dielectric Slabs
Principles of Ray Tracing

III. RADOME-INDUCED RADAR POINTING ERRORS ... ............. .71

Concept of Pointing Error
Wavefront Distortion Due to Transmission
Wavefront Distortion Due to Internal Reflection
Composite Wavefront Distortion
Radar Response to Wavefront Distortion

IV. RADOME-INDUCED RADAR POINTING ERROR CORRECTION ... ........ 156

Error Compensation
Complex Indicated Angle and Wavefront Distortion

V. CONCLUSIONS ............ . ... .................. 167

REFERENCES ...... .... ............................. 171

APPENDIX ...... .... .............................. 175

i
vii



LIST OF FIGURES

2-1. Interferometer Monopulse System ... ............... .. 11

2-2. Phasor Diagram of Interferometer Signals .. .......... .14

2-3. Interferometer Signals versus Incident Angle ... ........ 16

2-4. Parabolic Reflector Antenna System ... ............. .19

2-5. Fields of Parabolic Antenna and Sampling Source ......... 27

2-6. Normalized Antenna Pattern of Circular Aperture with
Uniform and Cosine Illumination ..... ............... 31

2-7. Normalized Antenna Pattern of Circular Aperture with
Uniform Illumination and the Term (1 + cos e) .......... 33

2-8. Sum and Difference Patterns of Circular Aperture with
Uniform Illumination ........ .................... 35

2-9. Sum and Difference Patterns of Circular Aperture with
Cosine Illumination ....... ..................... 36

2-10. Tangent Ogive Geometry ...... ................ .. 39

2-11. Dielectric Slab and Definition of Fields
(Parallel Polarization) ..... ................... .44

2-12. Reference Polarization Directions ... .............. .53

2-13. Transmission Coefficient of Lossless Dielectric Slab
with Half-wavelength Thickness .... ............... .57

2-14. Reflection Coefficient of Lossless Dielectric Slab with
Half-wavelength thickness ....... ................. 58

2-15. Tr8nsmission Coefficient of Lossless Dielectric Slab with
75 Dusign Angle ... ................... ...... .59

2-16. Reglection Coefficient of Lossless Dielectric Slab with
75 Design Angle .... ... ...................... .60

viii



2-17. Dielectric Slab and Offset Transmitted Rays ... ......... 62

2-18. Ray Offset versus Incident Angle for Dielectric Slabs
with Various Permittivities ...... ................. 65

2-19. Dielectric Slab and Reflected Rays ... ............. .68

3-1. Two Illustrations of Wavefront Distortion ............. 73

3-2. Tangent Plane Approximation of Radome Wall .. ......... ..76

3-3. Outline of Tangent Ogive Radome with Ray to Aperture
Center ........ ............................ .78

3-4. Insertion Phase Delay of TE Polarized Field with 900
Incidence Angle ...... .. ....................... 86

3-5. Insertion Phase Delay of TE Polarized Field with 850

Incidence Angle ...... .. ....................... 87

3-6. Insertion Phase Delay of TE Polarized Field with 800

Incidence Angle ...... ... ...................... 88

3-7. Insertion Phase Delay of TE Polarized Field with 700

Incidence Angle ...... .. ....................... 89

3-8. Insertion Phase Delay of TE Polarized Field with 600

Incidence Angle ..... ........................... 90

3-9. Insertion Phase Delay of TM Polarized Field with 90 0

Incidence Angle ...... ... ... ... ... ... .. 92

3-10. Insertion Phase Delay of TM Polarized Field with 850

Incidence Angle ...... .. ....................... 93

3-11. Insertion Phase Delay of TM Polarized Field with 800

Incidence Angle ...... .. ....................... 94

3-12. Insertion Phase Delay of TM Polarized Field with 700

Incidence Angle .... ............ ................ 95

3-13. Insertion Phase Delay of TM Polarized Field with 600

Tncidence Angle ...... .. ....................... 96

3-14. Transmission Cosfficients of Polyimide Quartz Wall
Designed for 60 ..... .... ..................... 98

3-15. Inaertion Phase Delay of TE Polarized Field Incident at
80 on Polyimide Quartz Radome ..... ............... 100

ix



3-16. Insertion Phase Delay of TM Polarized Field Incident at
80 on Polyimide Quartz Radome ......... ............ 101

3-17. Outline of Tangent Ogive Radome Showing Both Scan Angles
and the Polarization Angle ...... ................. 102

3-18. Insertion Phase Delay of 22.50 Polarized Field Incident
at 80 on Polyimide Quartz Radome ..... ............. 104

3-19. Insertion Phase Delay of 450 Polarized Field Incident
at 80 on Polyimide Quartz Radome ..... ............. 105

of 03-20. Insertion Phase Delay of 67.5 Polarized Field Incident
at 80 on Polyimide Quartz Radome ..... ............. 106

3-21. Outline of Tangent Ogive Radome Showing Internal
Reflection ....... ......................... .108

3-22. Magnitude of Internal Reflected, TE Polarized Field
with 70 Incidence Angle ...... .................. 115

3-23. Magnituge of Internal Reflected, TE Polarized Field
with 60 Incidence Angle ...... .................. 117

3-24. Magnitude of Internal Reflected, TE Polarized Field
with 50 Incidence Angle ...... .................. 118

3-25. Magnituge of Internal Reflected, TE Polarized Field
with 40 Incidence Angle ...... .................. 119

3-26. Magnitude of Internal Reflected, TM Polarized Field
with 709 Incidence Angle ..... .................. 121

3-27. Magnitude of Internal Reflected, TM Polarized Field
with 60 Incidence Angle ..... .................. 122

3-28. Magnitude of Internal Reflected, TM Polarized Field
with 50 Incidence Angle ..... .................. 123

3-29. Magnituge of Internal Reflected, TM Polarized Field
with 40 Incidence Angle ..... .................. 124

3-30. Reflection Coefficients of Polyimide Quartz Wall Designed
for 60 . ..... .. .......................... 126

3-31. Magnitude of Iternal Reflected, TE Polarized Field
Incident at 70 on Polyimide Quartz Radome ....... .. 127

x



3-32. Magnitude of IBternal Reflected, TE Polarized Field
Incident at 60 on Polyimide Quartz Radome ... ......... 128

3-33. Magnitude of I8ternal Reflected, TE Polarized Field
Incident at 50 on Polyimide Quartz Radome ... ......... 129

3-34. In-Plane Radar Pointing Error for Radome with 750 Wall
Design and Uniform Aperture Illumination Showing Effect
of Internal Reflection ........ .................. 141

3-35. In-Plans Radar Pointing Error for Polyimide Quartz Radome
with 60 Wall Design and Uniform Aperture Illumination
Showing Effect of Internal Reflection .... ........... 143

3-36. In-Plane Radar Pointing Error for Radome with 750 Wall
Design Illustrating Effect of Aperture Illumination
Function ....... ......................... ... 146

3-37. In-Plans Radar Pointing Error for Polyimide Quartz Radome
with 60 Wall Design Illustrating Effect of Aperture
Illumination Function ..... ................... .147

3-38. In-Plane Radar Pointing Error for Radome with 750 Wall
Design and Various Incidence Polarization ... ......... 149

3-39. In-Plane Radar Pointing Error for Radome with 600 Wall
Design and Various Incident Polarization ... .......... 150

3-40. Cross-Plane Radar Pointing Error for Radome with 750 Wall
Design and Various Incident Polarization ... .......... 152

3-41. Cross-Plane Radar Pointing Error for Radome with 600 Wall
Design and Various Incident Polarization ... .......... 153

4-1. Remaining In-Plane Radar Pointing Error After Compensation . 159

xi



LIST OF TABLES

2-1. Classification of Dielectric Slab Fields . .. .. .. .. . .45

xi



I. INTRODUCTION

The Institute of Electrical and Electronics Engineers gives

the following definition [1]

RADOME. An enclosure for protecting an antenna from
the harmful effects of its physical environment, gen-
erally intended to leave the electrical performance
of the antenna unaffected.

Skolnik [2] divides radomes into these two major classifications,

based on application and geometrical constraints: ground-based

radomes and air-borne radomes. This study deals with radomes used

on high-speed missiles which require a high degree of streamlining.

Streamlining places severe constraints on the geometry of the radome

and the radome material, which must withstand the temperature, pres-

sure, and possibly rain or lightning encountered during high-speed

flight. The antenna considered here is part of a radar system

that provides information concerning target position and velocity

to the guidance system of the missile. The radome may be considered

a "necessary evil" because it has no beneficial effects on the per-

formance of the radar but it is essential for protection of the antenna

and for good flight characteristics of the missile. Of particular

interest is the angular pointing error of the radar. This study is

addressed mainly at that problem.

Airborne radomes first had extensive application on aircraft

in World War II. Many design criteria and construction requirements

11
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were formulated during this period. Much of this work in the

United States and England is summarized in a volume of the MIT

Radiation Laboratory Series (3]. In another volume [4] of the

same series, radomes are discussed in conjunction with antenna in-

stallation problems. These two works list the essential character-

ics of radome behavior and contain references to most of the war-

time work.

All early radome work relies on ray tracing to obtain the electro-

magnetic energy reflected from or transmitted through the radome wall.

This method was extended by Tricoles [5] who treated the receiving

problem by tracing rays through the radome to a receiving aperture,

but then obtained the antenna voltage by an empirical method based on

aperture response to Huygen's sources. In a later paper [6] he used

the same methods to obtain the transmittance of an axially symmetric

missile radome. Each of these papers indicate that scattering from

the radome vertex may be responsible for some of the measured radome

behavior, and the second paper includes a crude approximation of this

scattering.

Analysis of radome effects on antenna performance has been carried

out for both transmitting and receiving antennas. The most frequently

calculated antenna parameter in radome analysis is the far-field anten-

na pattern. Paris [7] has presented a technique for determining the

transmitting antenna pattern of a horn anlenna covered by an aircraft

radome. His procedure is based on calculating the near-fields incident

on the radome by using a previously developed aperture integration pro-

gram (8], treating the incident fields as local plane waves, applying
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plane-wave transmission coefficients, and then treating the fields ex-

terior to the radome as equivalent sources of the radiated fields. A

similar approacn is taken by Wu and Rudduck [9) to obtain transmitting

boresight errors for a circular aperture behind an ogive radome. They

simplify the determination of the near fields incident on the radome

by expressing these fields in a plane wave spectrum. For the uniformly

illuminated circular aperture they consider, this results in an ana-

lytic expression for the near fields.

Since virtually all radome work has military application, few

results of development and testing appear in the open literature.

Most dissemination of radome information has been through a series

of symposia begun in the mid-1950's under the title of either Radome

Symposium or Symposium on Electromagnetic Windows. These symposia

were originally sponsored jointly by Ohio State University and the

U.S. Air Force and later by the Georgia Institute of Technology and the

U.S. Air Force. In recent years the Georgia Institute of Technology

has been the host and sponsor of the symposium. The proceedings of

these symposia provide an indication of the work performed in the ra-

dome area, but due to the unavailability of the proceedings, and the

abbreviated nature of the papers in them, they provide little concrete

information for other researchers to draw upon.

The importance of radomes in both radar and antenna systems

is accented by the inclusion of full chapters on radome design and

characteristics in a major radar handbook [10] and a major antenna

handbook [11].
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The most extensive treatment of radomes is contained in the two

volume report edited by Tice and Walton [12]. This report was intend-

ed to survey and sunnarize all of the rado.ne work done up to that

time. The report covers all aspects of radome design and testing,

both electrical and mechanical. An extensive bibliography is In-

cluded with references to both the open and classified literature.

It is unfortunate that these volumes are not widely available due to

their restricted circulation.

More recently, an entire handbook has been devoted to radome

research [13]. This volume mainly treats materials, but there are

chapters on electrical and operational considerations and a historical

introduction. A report on radome design has also been prepared for

NATO [143. This report contains an excellent summary of how environ-

mental, structural, electrical, and material considerations are com-

bined in successful radome design. A subsequent NATO report [15]

gives consideration to radome materials.

Simply stated, the radome problem is to find the voltage in the

antenna feed line when a plane wave is incident on the radome. An exact

solution of the radome problem is extremely difficult. The reasons for

this are the complicated geometry of the problem, the boundary condi-

tions which are imposed on the fields, and the large size of the struc-

tures as measured in wavelengths at the operating frequency.

The response of an aperture antenna may be determined from

the fields incident on the antenna and the known characteristics

of the antenna. The radome problem can thus be considered as that

of finding the incident fields at the antenia in the presence of the JI '
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radome and the antenna. The incident fields at the antenna are

composed of two distinct parts: the fields passing directly through

the radome to the antenna and the fields that are scattered from

the various objects near the antenna including the radome, metal

tip, support structure and various feed structures on the antenna.

The second category implicitly includes multiple scattering between

any combination of the mentioned objects. An exact solution to the

radome problem would consider all of these phenomena simultaneously

by obtaining a solution to the electromagnetic field equations that

would satisfy the boundary conditions at all surfaces of material

discontinuity. Such a problem could be formulated in terms of

integral equations for the tangential field components over a closed

surface surrounding the antenna. The complicated form of the boundary

conditions and the typically large electrical size of the structures

have made exact techniques intractable and approximate solutions

must be sought.

As previously mentioned, the response of a given antenna may

be determined from the incident fields. The importance of radome

effects should thus be ordered according to the influence on the

incident fields at the antenna and an approximate analysis will

consider only the most important of these effects. A primary

consideration is the effect of the radome wall on the part of the

incident field directly incident on the aperture. A well-designed

radome will be highly transparent and this component will constitute

by far the largest amount of energy incident on the aperture. Since
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the radome wall is a curved surface with a transmission coefficient

that varies with angle of incidence and polarization, the effect of

the radome wa'A1 on the direct wave will be attenuation, depolarization

and phase shift.

Of secondary priority is the incident field component that is

singly reflected from the internal radome wall. This component may

be quite significant at angles of incidence several degrees off bore-

sight where specular reflection from the radome wall into the aperture

is favorable.

Most airborne radomes designed for high-speed flight will be

equipped with a metal tip to increase the erosion resistance of the

radome. This tip is a source of indirect scatter at all angles of

incidence. The support structure behind the antenna proper is thought

to contribute little to the antenna voltage, since the feed is shielded

by the aperture and a well-designed feed will have little spillover at

the aperture. However, the structure behind the antenna can contribute

to scatter back to the radome and in turn to the aperture: multiple

scatter. Also multiple scatter can occur from the feed and its support

structure.

The emphasis of this study is on the analysis of existing

radomes as opposed to design of radomes having desired specifications.

Of primary interest is the prediction of the pointing error of a

monopulse radar operated in the radome. For the type radomes of

interest, the transmission properties of the radome wall and

reflection from the internal wall are considered to be the major
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contributors to pointing error with the first predominating at small

gimbal angles and the latter at angles well off the radome axis.

Radar poiating error can be a significLnt limitation to the

accuracy of missile guidance systems. Also, the rate of change of

pointing error with aspect angle, commonly called boresight error

slope, will influence the radar's measurement of target angular

velocity. The analysis performed in this work is directed toward

the prediction of these sources of error in order to determine their

impact on missile guidance and to evaluate methods for error compensa-

tion.

This work is organized to consider the fundamental elements of

radome, antenna, and radar analysis separately. This is done in the

following chapter. The third chapter contains an analysis of these

items as a system with primary emphasis on prediction of angular

pointing errors. Methods to compensate for angular errors are the

topic of Chapter IV.



II. FUNDAMENTAL FACTORS IN
RADOME ANALYSIS

This chapter may be considered a survey of the basic information

needed for radome analysis. The approach taken here is to examine the

subsystems encountered in the radome-radar problem and some of the

models used to obtain tractable solutions to realistic problems. The

first section in this chapter deals with the theory of monopulse radar

operating ideally without radome, signal distortion, or noise. The

second section introduces the radomes that will be considered in this

work. A discussion of tangent ogive geometry is presented. Next are

sections on the transmission and reflection properties of planar slabs

and the technique of ray tracing. These basic optical methods will be

used to model the local properties of the radome surface. The final

section of this chapter discusses ray tracing which forms the basis

for the treatment of propagation within the radome.

MONOPULSE RADAR

Monopulse is a technique for obtaining target direction informa-

tion from a single radar return, hence the origin of the term. The

theory of monopulse operation is well known and discussed in many in-

troductory radar books such as Skolnik [13] and Barton [17]. The most

definitive treatment of the mathematical theory of monopulse and the

underlying principles is Rhodes early monograph [18]. A recent volume

8
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[19] edited by Barton contains reprints of many of the key papers on

monopulse and is recommended reading for anyone wishing a historical

perspective on the developments in this area.

This section is designed to serve as an introduction to mono-

pulse operation under ideal conditions and to form a foundation for

the later analysis of a monopulse system operating in an environment

containing a radome. In the main body of this work it will be shown

that, in general, a radome introduces spatial distortion into the

wavefront incident on the receiving antenna. This violates one of the

key assumptions concerning the received wave and is a source of radar

pointing error.

Fundamental to the theory of monopulse is the assumption that

the wave scattered from the radar target is a uniform plane wave over

the receiving antenna or that the antenna is in the far-field

of the target. When this assumption is satisfied the response of a

receiving antenna is completely described by its far-field antenna

pattern. The far-field antenna pattern of a radar antenna is easily

measured and analytic expressions for such patterns are not difficult

to obtain.

The first basic problem addressed in this study is the determi-

nation of a method to obtain the response of a monopulse system to a

non-planar non-uniform wave. This problem has been addressed in the

literature in studies on radar response to glint [20], multipath [21],

and unresolved targets [22]. The approach taken in each of these studies,

however, does not answer the basic question raised here. When analyzing
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the above-mentioned sources of a distorted wavefront, the approach taken

has been to decompose the target into smaller parts, each of which

scatters a wave that is uniform and planar at the receiving aperture.

Hence, the principle of superposition can be applied to obtain the mono-

pulse response in these environments. Treating a general wavefront as

a superposition of plane waves traveling in different directions is a

well-documented analytical technique, often known as plane-wave spectrum

analysis [23].

The resolution of a received wave that is distorted by a radome

into a plane-wave spectrum representation is a difficult problem and is

not justified if only the monopulse response is desired. Techniques

are presented in this section for obtaining the monopulse response

directly from the fields incident on the antenna, be they planar, dis-

torted, or whatever. However, a most elementary monopulse system in

the form of an interferometer is examined first. This provides an easy

way to visualize how monopulse works. Later, the receiving

properties of the more practical parabolic reflector antenna are pre-

sented.

Consider a receiving antenna system made up of two elements sepa-

rated by a distance D as shown in Figure 2-1. Assume a time-harmonic

plane wave traveling in free space is incident on the receiving ele-

ments. Here and throughout this work the time variation of all time-

varying quantities is assumed to be ejWt where j = V-T, w is the fre-

quency in rad/s, and t is the time in seconds. Furthermore, the time

variation will usually be suppressed and the conventions of ac circuit
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analysis, or phasor notation, will be employed. Thus the electric

field amplitude of the incident field, Ei, is given by

Ei . Ei eJk(x sine + y cose) (2.1)
0

whr i is the magnitude of the field, k is the propagation constant

given by 2w/x, X is the wavelength of the wave, and e is the incident

angle as indicated. The phase reference for the incident wave and the

antenna system is taken to be the origin.

Induced potentials that are proportional to the incident electric

field will exist across the terminals of the receiving elements. These

signals can be written as

V1 = V0 e
j k s ine  (2.2)

at element 1 and

V2 = V0 e1
j k sine (2.3)

at element 2 where V is the voltage magnitude which is identical for

element 1 and 2.

The distinguishing feature of monopulse is the method of com-

bining V1 and V2 so that the angle of incidence can be determined.

This is done by adding and substracting the antenna voltages to form

two new signals known as sum and difference signals. Thus the sum

signal, , is given by

= VI + V2 (2.4)



13

and the difference signal, a, is given by

a=V I - V2. (2.5)

The method of forming these signals is shown in Figure 2-1.

It is convenient to introduce a new variable to represent the

phase of V1 and V2 as given in (2.2) and (2.3). The symbol, u, will

be used to denote this phase angle or,

=D - rDu - sine =- sine ; (2.6)

where it is noted that u contains the element spacing normalized to

the wavelength. Using the variable u and substituting (2.2) and (2.3)

into (2.4) and (2.5), the sum and difference signals can be written

as

eV0 e3u+V 0 e j u  (2.7)

AV eju . V0 e-JU (2.8)

or by using Euler's identity,

= 2V0 cos(u) (2.9)

a= j2Vo sin(u) (2.10)

Signals V1 aid V2 together with r and A are conveniently displayed on a

phasor diagram as shown in Figure 2-2. It should be pointed out that

the choice of the origin as the phase center causes Z to be purely

real, and A is in phase quadrature with z.
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Incidence angle detection is accomplished by taking the real part

of the ratio of -jA to I or,

-V 0 sin(u)

ea Re (-& 2V} sin___ Z tan(u) (2.11)
2V0 cos(u)

The ratio Re{-jA/) is known as the monopulse ratio and is the output

signal of the monopulse system. Figure 2-3 is a plot of the sum and

difference response and the monopulse ratio. For tracking radars, the

angle of incidence will be near the antenna axis, and thus u will be

small. Using the small angle approximation, tan(a):4a, and the

definition of u, equation (2-11) can be written as

I

Re -A u = sine (2.12)

Again using a small angle approximation (sin(a) ai), (2.12) can be

solved for e,

[-D Re{ } (2.13)

Thus, by measuring the monopulse ratio and multiplying by a constant,

the angle to the radar target may be determined. This information may

be fed to a gimbal system that repositions the antenna so that a moving

target's position is continually tracked.

Some comments are in order concerni ig this monopulse system.

First, the system will have zero output when the amplitude

and phase of the voltages at elements 1 and 2 are identical. If the
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phase of the signals at elements 1 and 2 are different, an output signal

is produced that is linearly (for small angles) related to the angle of

incidence of a plane wave that would prodtce the element voltages. In

this respect the two-element intereferometer monopulse system is iden-

tical to the method used by Sims and Graf [24] for determining wave-

front distortion due to glint. Their method involved sampling the wave-

front at two points separated by a distance representing the receiving

aperture diameter and using the phase of the wave at these points to

make a linear approximation of the wavefront across the receiving

aperture. The angular difference between the normal to this wavefront

and the true angle to the target was then defined as the radar pointing

error due to glint.

Note also that the sign of the incidence angle is determined by

the phase of the difference channel with respect to the sum channel.

When the incidence angle is positive, A leads I by 900 in phase, and

lags by 90° when the incidence angle is negative. The phase-sensitive

detector shown in Figure 2-1 indicates the sign of the incidence angle

by measuring this phase relationship. One final comment concerning

monopulse systems is that incidence angle determination does not involve

the amplitude of the incident wave. This is because incident angle

determination occurs in the form of a ratio. Of course the signal

levels must be significantly above the noise level for reliable opera-

tion and this is assumed throughout.

Next the receiving properties of a monopulse system employing a para-

bolic reflector antenna are examined. The parabolic reflector is a commonly
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used antenna and has received considerable attention in the literature

[25, 26). As previously mentioned, almost all antenna analysis treats

the transmitting situation and obtains the fields at points far removed

from the radiating structure. The receiving antenna has been treated

in general [27], but little attention has been given to the aperture

receiving antenna. The purpose of the remainder of this section is to

derive expressions for the response of a monopulse receiving antenna

excited by an arbitrary (non-planar, non-uniform, randomly polarized,

but time-harmonic) incident field. The results are applicable to all

aperture antennas.

The Lorentz reciprocity theorem will be employed to find the

receiving characteristics of the parabolic reflector antenna. In order

to use this theorem, the behavior of the antenna in the transmitting

mode must be known. This is most easily done through the use of the

equivalence principle, that is, by finding a set of sources which produce

the same fields as are produced by the antenna in the region of interest.

As will be seen, the equivalent sources play an important role in the

monopulse receiving system.

The parabolic reflector antenna system is composed of two princi-

pal parts, a feed antenna and a reflecting surface in the shape of a

paraboloid of revolution. As shown in Figure 2-4, the feed antenna,

the primary radiator, is located at the focus of the parabola. The

spherical wavefront leaving the feed antenna will be reflected at the

parabola and become a planar wavefront traveling parallel to the

antenna axis.
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The planar circular area that is perpendicular to the antenna axis

and has its perimeter at the reflector's edge is called the aperture

plane. The fields over the aperture plane can be used to determine the

transmitting and receiving characteristics of the antenna. This is

shown first for the transmitting case where the fields produced by the

antenna in region z > 0 are to be found.

The region z > 0 is source free, so by the uniqueness theorem [28]

the fields in this region are uniquely related to the tangential field

components over a closed surface that contains the actual sources. It

is convenient to enclose the sources by the surface formed by the xy-

plane and a large hemisphere with center at the origin. The hemisphere

may be thought of as being of infinite radius or of finite radius but

large enough so that the fields over the hemisphere are negligible.

Thus the fields in the region z >0 are uniquely related to the tangen-

tial field components over the xy-plane.

The electric and magnetic field intensity produced by the antenna

will be denoted by -0 and Re and it will be assumed that Ea and 0 are

zero in the region z < 0, that is, behind the reflector. This will

occur when the feed does not produce fields in this region (no spill-

over in the terms of antenna engineers), and when scattering from the

reflector edge is neglected. Thus, all the antenna fields in the xy-

plane are confined to the aperture plane.

The equivalence principle [29] will next be used to further simplify

the antenna analysis. As guaranteed by the uniqueness theorem, the



21

fields in the region z > 0 are now completely determined by the tangen-

tial field components in the aperture plane. According to the equiva-

lence principle, these same aperture fields may be supported by equiva-

lent surface currents, s and a, in the aperture plane, and all the

fields in the region z < 0 may be set to zero. The equivalent currents

are found from,

isa xa (2.14)

and

sa = xn (2.15)(SlS

where fa and 0 are the fields produced by the antenna and n is a unit

vector normal to the aperture plane as shown in Figure 2-4.

The equivalent surface currents given by (2.14) and (2.15) follow

from the electromagnetic boundary condition equations which state that

discontinuities in tangential field components are associated with surface-

current densities. At a smooth interface separating regions labeled

1 and 2 these equations are:

is= nx E1  _R21 (2.16)

fs= -E2) x n,(2.17)

where subscripts 1 and 2 indicate the fields at the interface in region

1 and 2 respectively, ' represents the electric field intensity, H the

magnetic field intensity, Js is the electric surface-current density, Ms

is the magnetic surface-current density, and n is a unit vector normal
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to the interface directed into region 1. Thus (2.16) states that elec-

tric surface-current densities are associated with discontinuities in

tangential magnetic fields and (2.17) states that magnetic surface-

current densities are associated with discontinuities in the tangen-

tial electric fields.

By choosing region 2 to be the region z < 0 and by setting all

the fields in this region to zero., (2.14) and (2.15) are seen to follow

from (2.16) and (2.17). The fields in the region z > 0 are the same

as before but now they are supported by the "equivalent currents", Js

and MS. Thus the entire problem of finding the antenna fields is reduced

to the problem of finding the fields of the currents given by (2.14) and

(2.15).

It should be noted that the above treatment of the reflector antenna

results in the same formulation as the classical optics problem of

diffraction from a circular aperture in a conducting screen. All such

aperture problems may be solved by the same method based on the equiva-

lence principle.

A comment concerning the antenna feed is in order before proceeding.

As seen in Figure 2-4, part of the field radiated by the feed will be

reflected back to the feed and interact with it. This is often referred

to as aperture blockage and may have a significant effect on the perfor-

mance of the antenna system, particularly when the size of the feed is

an appreciable part of the reflector size. Consideration of aperture

blockage is beyond the scope of this work and it will be assumed that

the antenna system can be represented completely by the equivalent

currents as previously discussed.
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There are several ways of determining the fields of the antenna

from the equivalent currents. These include direct integration, use of

potential functions, and the plane-wave-spe:trum technique. The fields

radiated by the antenna will not be found here since it is the antenna's

receiving properties that are of greatest interest. These receiving

characteristics can be derived from the Lorentz reciprocity theorem.

The Lorentz reciprocity theorem, which follows directly from

Maxwell's equations, is a way of relating two sets of sources and their

fields. An integral form of this theorem is given by [30],

fiEa . b- Mb) d I fe - Hb • Ra) d, (2.18)

vol vol

where superscripts indicate a set of sources and associated fields as

used previously, and the integrations extend over all space. Rumsey [31]

has given the name reaction to the relation between sources and fields

expressed by either side of (2.18). The recripocity theorem thus states

that the. reaction of the field a on source b is equal to the reaction of

the field b on the source a.

In order to apply (2.18) to the receiving antenna problem the a

source and field are chosen to be that of the equivalent currents

representing the parabolic reflector antenna and the b source is chosen

to be a point electric current element (dipole) given by,

-a-b s(IR - R'1) , (2.19)

~--
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where o contains the magnitude and direction of the current element,

ih is a vector from the origin to the element's location, R is the posi-
*A A

tion vector ( = xx + yy + zz), and a is the Dirac delta function. M

is set to zero.

Substituting (2.19) into the left-hand side of (2.18) and recog-

nizing the sampling property of the Dirac delta function yields,

J • Tob6 (IR -R'I)dv b " (2.20)
vo 0 R '

If J b is chosen to have unit amplitude and to be in the direction of
then (2.20) is simply the magnitude of the electric field at the point

dipole produced by the sources Ja and Ma . From the right-hand side of

(2.18), it is seen that the magnitude of Ea at R', as given by (2.20),

is equivalent to the reaction of the fields of the unit-amplitude dipole

on the equivalent currents of the parabolic antenna.

The behavior of a transmitting antenna at distances much greater

than the antenna dimensions (in the far-field) is completely charac-

terized by the electric field it radiates, due to the transverse nature

of the radiated fields. The far-field response of a transmitting anten-

na, defined as the magnitude of the electric field, is obtained from

(2.20) when I'( is large. The response of the same antenna in the

receiving mode, defiated as the open-circuit voltage at the antenna

terminals, is )roportional to the right-hanc' side of (2.18) [31]. In

the remainder of this section the receiving-mode response of the para-

bolic antenna is discussed.

_.I
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The right-hand side of (2.18) can be rewritten using the aperture

fields as given by (2.14) and (2.15) yielding,

rb . (n x a) - . (10 x ds, (2.21)

A

where A indicates that tne integration is only over the antenna aperture

since the a currents are zero everywhere else. Throughout this study

it is assumed that - and -a are of constant phase and related like a

plane wave in the aperture. For a linearly polarized antenna a will

have the same direction over the aperture and Ha will also be uni-

directional and at right angles to Ea.

As an example, assume that ra in the aperture is given by,

E =E aj (2.22)

and Ha is

- Hoa E oa (2.23)

where zero subscripts indicate magnitude. The second part of (2.23)

is obtained from the plane-wave nature of - and Ha , and q is the intrin-

sic impedance of free space (n = /u-c). Figure 2-5(a) illustrates

these aperture fields.
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Substituting these a fields into (2.21) yields,

SA b . (1Ea;) + b . (Ea y)ds , (2.24)
AA

where the cross products have been evaluated for n = z.

Eoa is common to both terms in (2.24) and can be factored to yield

a- 1 -bo
J a[H * y n x] ds. (2.25)

0Thus it is seen that Eao csa egtn ucinfrteitgain

Also, since E a has constant phase, it can be assumed purely real. By
0

adjusting the variation of Ea over the aperture, various antenna pat-
0

terns may be obtained. In practice this is accomplished by design of

the antenna feed.

The importance of the form of Ea will be emphasized by giving it
0

the name aperture illumination function and using the symbol, g, for

this function. The monopulse sum and difference patterns are produced

by the proper aperture illumination functions. To see how this is

accomplished it is first necessary to find the antenna response to an

incident plane wave.

To obtain the antenna response, assume that a distant point dipole

produces a field which is incident on the aperture as in Figure 2-5(b).

This field, which is denoted by b, will be a uniform plane wave over

the aperture and can be written as,

b jksinexb e (-cosex + sinez) (2.26)
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Figure 2-5. Fields of Parabolic Antenna and Sampling Source.
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and

E b jksinex
n

where E0b is the magnitude of the electric field.

Substituting (2.26) and (2.27) into (2.25), performing the dot pro-

ducts, and using the symbol for the aperture illumination function

yields,

"A E b 1 jksinex
gI:-. +-E cos e] e ds (2.28)f n n 0o

A

By removing the constants from the integral and making the substitution,

kx = k sine, (2.28) becomes,

I E b( + cose) Ag e j ds. (2.29)
n .1

A

The integral in (2.29) is immediately recognized as a Fourier transform

of F and expresses a well-known relation between the aperture illumination

function and the far-field antenna pattern.

The integration in (2.29) is most easily performed in circular

cylindrical coordinates for the circular aperture under discussion. Writing

the integral completely, (2.29) becomes,I E + 2ir 0/2 j~cs

E b (1 + cose) g(p,o) e ododo, (2.30)
n I ff

0 0
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where the functional dependance of g is now shown and p and * are the
coordinates indicated in Figure 2-5. In order to normalize this expres-

sion as was done for the interferometer, the following variable change

is introduced,

r 2p/D , (2.31)

D

- sine. (2.32)

Using these variables, expression (2.30) is written

1 b D2  27r 1 jurcos¢
E (l + cose) f f g(r,O) e rdrdo (2.33)

0 0

where g(r,O) replaces g(p,o) according to (2.31).

As with the interferometer, an aperture antenna used with a mono-

pulse system will have two far-field response patterns which are again

called the sum and difference patterns. These patterns are deter-

mined by the aperture illumination function. The sum pattern is an even

function of e and the difference pattern is an odd function of e. It

has been shown that the far-field pattern of the aperture involves the

Fourier transform of the aperture illumination function (2.29).

According to elementary Fourier transform theory [32], the transform of

an even function is even and the transform of an odd function is odd.

Thus the aperture illumination functions for the sum pattern will be

even, and the aperture illumination function for the difference pattern

will be an odd function of x.
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In this study two commonly used sum-pattern aperture illumination

functions will be considered. The first is uniform illumination, or

g(p,D) = 1 , p < . (2.34)

This illumination is sometimes called ideal because it is constant to

the edge of the aperture but zero outside. It would be impossible to

create in practice due to the discontinuity in the fields at the

aperture edge.

The second sum illumination function is tapered from the center of

the aperture to the edge according to a cosine function,

g(pO) = Cos( , p < . (2.35)

The integral part of (2.33) is called the aperture pattern. It will

be shown that for large apertures the aperture pattern contains all the

significant variation of (2.33) with e. The aperture patterns for the

two aperture illumination functions are shown in Figure 2-6. These

patterns are normalized to their respective maxima and are plotted in

dB versus u. It is noted that the tapered illumination function pro-

duces a wider main lobe but has lower side-lobe levels than the uniform

illumination. These aperture patterns could be obtained analytically,

by using a two-dimensional fast Fourier transform algorithm, or by

numerical integration. Figure 2-6 and the remaining figures in this

section were obtained using the numerical integration technique

that is used to find the response of the antenna with radome.

Figure 2-6 may be regarded as an "universal" aperture pattern since

the response for any size aperture, any wavelength, and any incidence



31

0
0

0;

0
0

Cosine taper

Uniform

S0

CD

413

a--

C0

0.0 3.060 .01.0 1.v
@3 o

Fiur 2-. NrmlzdAnen ateno
Cicua ApruewtInfr n oieIlmnto



32

angle can be looked up. This study is concerned with electrically

large apertures, and as an example an aperture with a diameter of 8 wave-

lengths will be used. The statement that he aperture pattern contains

the significant angular variation of the antenna response is now justi-

fied. The response function given by (2.33) is the product of two

terms that vary with e: the term (1 + cose) and the aperture pattern.

Figure 2-7 is a plot of these terms in dB versus incidence angle, e.

Each curve is normalized to its maxima. It is seen that the term

(1 + cose) is only 3dB down at e = 65* and a maximum of 6dB down at

90, while the aperture pattern is greater than 30dB down for all

angles greater than about 30*. Since the antenna response in dB is

the sum of these two terms, little error is introduced by ignoring

the (1 + cose) term.

A method presented byBarton and Ward [33] will be used to obtain

the difference pattern illumination functions. They note that

the difference pattern of monopulse antennas resembles the derivative

of the sum pattern. If this relation is taken to be exact, the difference

illumination function, denoted by gd' is related to the sum illumination

function, g, by,

gd(xy) - Ls g(x,y) (2.36)

where it is noted that gd is the product of the sum illumination and

the linear odd function, x; Ls is a constant. Since g is even, gd

is odd.
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Figure 2-7. Normalized Antenna Pattern of Circular
Aperture with Uniform Illumination and the Term (1 + cos e).
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The constant, Ls , is the effective aperture illumination power

width in the terminology of [33] and is given by

f (2irx)2 lg(x,y)1 2 ds

Ls a A (2.37)
f llg(x,y)12 ds

AJ

For the case of uniform illumination in the circular aperture, Ls is

Dr/2, and for cosine tapered illumination (2.37) yields L = 1.071867D.s

When the difference illumination is defined by (2.36) with Ls

given by (2.37), the sum and difference illumination functions contain

equal power. This would be expected in a well-designed monopulse

antenna.

Using (2.36) and the above constants, the difference illumination

for uniform sum illumination is,

4x D (2.38)gd = 0 2 ;(.8

and for-cosine illumination is,

5.861962X ") D

gd = D cos(D) p < (2.39)

where a mixed coordinate system is used for convenience.

The sum and difference illumination functions and the far-field

response function of an 8x diameter aperture are shown in Figure 2-8

for uniform illumination, and in Figure 2- 3 for cosine tapered illumina

tion. The response functions are again normalized to the maximum of the

sum patterns, but are now shown with a linear ordinate scale.
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Monopulse angle detection is accomplished by connecting the sum and

difference outputs of the parabolic antenna to an angle detection circuit

as was shown in Figure 2-1. The angle of an incident plane wave, ei,

is determined from the monopulse ratio, or

i-1 Re{-jA} (2.40)

where K i5 the slope of the normalized difference pattern evaluated at

e = 0. For the case of uniform sum illumination, the value of K is given

by Barton and Ward to be 1.573 D/x for ei measured in radians. For the

cosine-tapered illumination, K can be shown to be 1.475 D/X.

The incidence angle equations for the 8X diameter aperture considered

in the example become,

= (12.585)-1 Re{--} , (2.41)

for the uniform illumination, and

= (ll.800) "l Re{-:-A} (2.42)

for the cosine tapered illumination, where 9i is in radians. These two

equations and the methods outlined above will be used to find the indi-

cated target angle in the next chapter.

To conclude this summary of monopulse principles, it is pointed

out that the interferometer may be considered as an aperture illumination

function given by,

g- =D ±, '0 (2.43)

g=0 2s R-(.~,0oj
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since the interferometer samples the incident wave at the points (_t, 0, 0)
as described earlier. It is useful to keep this simple idea of wavefront
sampling in mind while considering the behavior of radomes.

TANGENT OGIVE RADOME GEOMETRY

The geometry and coordinate system of the tangent ogive radome are

discus:ed in this section. The tangent ogive is used for the radome
shape throughout this study because it well represents the nose section

of high-speed missiles. For minimum drag the high-speed missile must
be highly streamlined. With proper parameter selection, the ogive makes

a satisfactory shape for the missile nose.

The tangent ogive is a surface of revolution generated by the arc
of a circle as shown in Figure 2-10. The axis of the ogive is chosen
to be the y-axis, and the generating arc is centered on the z-axis in
order to obtain tangency along the contour where the ogive joins the
missile body. The radius of the ogive, p, may be expressed as a func-

tion of'position along the axis, y, and the generating parameters by

S 2+ 2 (2.44)

where R is the radius of the generating arc, and W is the base diameter.

A measure of an ogive's streamlining is the length-to-diameter ratio,
4/W. This ratio is encountered in aerodynamic studies where it was given

the name "fireness ratio". The greater th2 fineness ratio the more

streamlined is the ogive.
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It is convenient to express the length of the ogive generating arc

in terms of the fineness ratio and the ogive base diameter, W. This can

be done by considering the right triangle OTO' in Figure 2-10. The

sides of OTO' are related by,

R2 = 2 + [R - W12 (2.45)

which can be solved for R yielding,

R= W (2.46)

This expression is useful for calculating R for an ogive with specific

fineness ratio and diameter.

The shape of the tangent ogive is sometimes specified by the para-

meter, caliber. The caliber, C, is defined as the ratio of the genera-

ting arc length to the base diameter or,

C = R/W (2.47)

In addition to knowing the ogive shape, the unit vector normal to

the ogive surface is required for the incidence angle calculations dis-

cussed later. It is most convenient to express this unit normal, n,

as a sum of three rectangular components, or

Sn= nx + nyy + nzZ (2.48)
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where nx, ny, nz are the components.of n in the coordinate directions

x, y, and z respectively. These components can be found from geometri-

cal considerations, or by evaluating vf/jvfj with f given by the surface

equation. The component of n in the axial direction, ny, is given by

ny = y/R .(2.49)

The component of n perpendicular to y, nr, is then found from the re-

quirement of unit magnitude, or

2-
nr = [1 - ny , (2.50)

and nx and nz are given by,

nx = nr x/p , (2.51)

nz = nr Z/p . (2.52)

The radomes considered in this study have uniform thickness and fill

the region between two concentric ogives. Thus a radome with thickness,

t, and an inner surface formed by an ogive with generating radius R, has

as an outer surface an ogive with generating radius (R + t).

TRANSMISSION AND REFLECTION PROPERTIES OF PLANAR DIELECTRIC SLABS

In this section the transmission and reflection coefficients for

plane waves incident on an infinite planar dielectric slab, or several

slabs sandwiched, are derived. Virtually all analyses of radomes have

used such plane-wave transmission coefficients to relate the electro-

magnetic field on opposite sides of a radome wall; and good results are
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obtained. The technique of modeling the radome wall is discussed in

the following section. Although transmission coefficients for planar

slabs have been presented in the literature in varying degrees of comn-

pleteness and generality (Collin [34] being one of the better examples);

they are derived here in order to define the notation and demonstrate

the method of solution. The technique used here is similar to the

equivalent circuit approach used by Robinson [35).

The problem of transmission and reflection of a plane wave inci-

dent on a planar dielectric slab is an electromagnetic boundary condi-

tion problem. Transmission and reflection of an incident wave are

necessary results of the boundary conditions at surfaces of material

discontinuity. Complex transmission and reflection coefficients can

be used to express the fractions of the incident fields that art!

respectively transmitted through and reflected from the dielectric

slab as well as giving the phase of these fields. The general equa-

tion for a plane wave is used to express all the fields.

Electromagnetic fields in homogeneous, isotropic, time-invariant,

source-free regions satisfy the vector Helmholtz equation,

V2 a 0 (2.53)
at

where F is either the electric field intensity or the magnetic field

intensity, 72 is the vector Laplacian operator, time dependence is

e ,~t p is the permeability of the medium, and is the complex permit-

tivity of the medium given by
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= c(I - j tan 6), (2.54)

with e the permittivity and tan 6 the loss tangent of the medium

(tan 6 = a/we). The use of the complex permittivity in (2.53) accounts

for attenuation of the fields due to loss.

The solution to (2.53) for fields that vary in only one direction

(plane waves) may be written as,
A

jka * r
= F0  e , (2.55)

where an is a unit vector in the direction of wave motion; r = xx + yy + zz;

k = and is a complex-vector constant representing the ampli-

tude, direction, and phase of E or IT at the origin; and the time depen-

dence is suppressed.

It will be useful to define the vector k as

k= k an = kxx + kyy + kzZ. (2.56)

This vector is in the direction of the Poynting vector and is sometimes

called the wave vector. The components of k must satisfy

+k 2 + k 2l (2.57)

This relation provides a very convenient way to treat the boundary

condition problem of a plane wave incident on a planar dielectric slab.

The geonetry used for a dielectric slab which may be. located

between two dissimilar regions is shown in Figure 2-11. For the
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practical case of a single layer, the regions z < 0 and z > d will

contain the same material, usually air.

The fields in the various regions are classified according to

location and direction of travel as presented in Table 2-1. Super-

scripts identify each category.

Table 2-1

Classification of Dielectric Slab Fields

Name Location

Incident Fields z < 0 E +1

Positive Internal Fields 0 < z < d Eu, Hu
Negative Internal Fields 0 < z < d Ev H

Transmitted Fields z > d Et, Ht

Reflected Fields z < 0 Er, Ar

These classifications are straightforward but a comment is in

order concerning the internal fields. When a wave is incident at z = 0,

in general, there is a field transmitted through the interface at

angle e2. This field will travel to the z = d interface and be

partially reflected, return to z = 0 and again be partially reflected

and so on. The notation Eu and Hu means the superposition of all fields

in the slab traveling in the generally positive z direction. All of

these fields will have the same wave vector, ku, as will seen by Snell's

reflection law. Similarly iv and Hv mean :he sums of all fields travel-

ing in the generally negative z direction. These definitions are neces-

sary to solve the "steady-state" problem.

Maid
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Two orthogonal polarization states can be considered for the inci-

dent field. The polarization directions are with respect to the plane

of incidence: the plane containing the normal to the slab and i. Per-

pendicular polarization means Ei is perpendicular to the plane of inci-

dence, and parallel polarization means T' is contained in the plane of

incidence. An arbitrarily polarized incident field can be expressed as

a superposition of a parallel polarized Vi and a perpendicular polarized

E.

Parallel polarization will be considered first, then the transmis-

sion and reflection coefficients for perpendicular polarization will

be obtained using the principle of duality. The equations for the

parallel polarized plane waves listed in Table 2-I are as follows:

j~'+ k'z)11
= E0  e z (-cose i y + sine i z) (2.58)

- -j(ky + kz)
Eo e (x) (2.59)

= -j(k y - krz) ^
Er =Er e - (-cose y - sine Z) (2.60)

kr -(k -kz)
1r Zl Eo e- (-x) (2.61)

u -j(kuy + kzUz)
= E0  e (-cose u y + sine u z) (2.62)

HU~ u-j (k/y+ kzUz)Hu Z21 Eou e (x) (2.63)

v v -J(kvy- kzV Z)
E 0  e oz z (-:osev y - sinev z) (2.64)

-j(kE - kVZ)
H = 2 Eo0 e (-x) (2.65)
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- (ky + k(z-d))
it = Eot e (-coset y - sine t z) (2.66)t

Ht Z 1  e-J(kY + kz (z-d))3t=z o t  (x) (2.67)

where the subscript, "o", indicates the quantity is a complex constant

and Zn is the intrinsic impedance of the nth region as given by

Z 7; =u(2.68)

Z is the ratio of transverse components of E and H in a uniform plane
n
wave traveling in the medium of the nth region. Note that the phase

reference of the transmitted fields is taken at (O,O,d).

Relations between the fields listed above are obtained from

boundary conditions (2.16) and (2.17). Since no surface currents will

be present on dielectric sheets, these boundary conditions reduce to

continuity of tangential fields or,

Etl = Et2  Htl = Ht2 at z = 0 (2.69)

Et2 = Et3  Ht2 = Ht3  at z = d (2.70)

where the subscript t indicates total tangential field, and the number

refers to the region.

For parallel polarization (2.69) and (2.70) refer to the y- compo-

nents of E and the x-components of H. In terms of the field components

(2.70) can be written as
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EyU +E = Et (2.71)
yy yz%

HxU + HxV = Hxt 1z - d (2.72)

Substituting (2.62) - (2.67) into (2.71) and (2.72) yields

-j(k Uy + k Ud) 
-j(kyVy - kVd)

E0U e (-coseu) + EoV e (-cosev)

= e-t jkyty
z Eot (-coset) (2.73)

-1~ u , j y+ kud) 1 -(k~y - kzz) Z1 EekyZ- zI E u e- "~ " Z-1 E v e- z 1  t O  k

Z2 E0  2 0 3 0 e

(2.74)

Equations (2.73) and (2.74) must hold for any y, given the follow-

ing relation,

kyu =k k (2.75)
y y y

which can be written in terms of the wave angles as

k u sine u = kv sine, = kt sine t. (2.76)

Since ku equals kv (waves in the same medium), the first equality in

(2.76) expresses Snell's reflection law: angle of incidence equals

angle of reflection. The second equality in (2.76) is Snell's law of

refraction. The same relationship holds at the z = 0 boundary and can

be applied coisecutively for layered media.
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By taking advantage of (2.75), equation (2.73) and (2.74) can

be simplified to

EoU cose 2 + E 0 ve cose 2 = E0 t cose t  (2.77)

Z21 [E • - E 0 ] = Z31 Eot (2.78)

where 8u and ev have been replaced by e2 and where * is given by

a a (ku d) = (kv d) = kud cose 2  . (2.79)z ~z2

A matrix equation can be written to combine (2.77) and (2.78),

j+j, -je - e j u

2 Z2cosO 2 2 0oU 0o o cose t

-j' j j, -ji,
e -e e u E
Z2cose 2  2 2Zl(E° " E2 z 3 0

-..- -2.80)1-

The use of hyperbolic functions allows this to be written as

cosh(jp) -Z2cose 2sinh(j*) (E0u + E0V)cose2  E0t cose t

Zse 2t) cosh(j ) Z21(Eou - EoV) Z 1 Eot
z2cose 22 0 03 o

L 2.81)

Multiplying each side of (2.81) by the inverse of the coefficient matrix

yields,

(EoU + EoV) co sh(j,) Z2cose2 sinh(j4) Eot cose 7

=1

1 Usinh(j ,)2 (E0u-E 0v) Zcse 2 cosh(jp) z 3 Eot
(2.82)
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This is a very useful result since it relates the tangential fields

on one side of the slab to those on the other side or in general,

e N = B Et(N+I)] (2.83)

LtNJ L o L t(N+l) j

where N and N+l indicate the total tangential fields at the Nth and

(N+l)th interface and A, B, C, and D are identified from (2.82). This

result is analogous to the ABCD matrix used in circuit theory to relate

the input voltage and current of a two-port network to the output volt-

age and current.

The left-hand side of (2.82) contains the tangential fields at the

z = 0+ boundary, which must be equal to the tangential components of the

incident fields. Writing this in matrix form yields,

11 0 0 0 s2 (2.84)
1 E+ r) - 1 [( u E v

[ (E - E J z - E)J

i r

Since E and Eo are both of interest they can be factored out of the

left-hand side of (2.84) and the right-hand side can be replaced using

(2.82)

c ] f = (2.85)

This equation contains all the information needed to find the transmis-

sion and reflection coefficients. For the usual case of a slab withi
I
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the same medium on both sides, ei = et and Z = Z3. This case is

considered here. The parallel polarization transmission coefficient,

Till is defined as

Et
Tl (2.86)

0

and is found from (2.85) to be

Tl12 A + ZBCO i 2+ C Zlcose+ (2.87)

71 1oei

The parallel polarization reflection coefficient, rll, is defined

as, Er

- , (2.88)
EoI

0

and is from (2.85),
BlO e C- COe - D

cose Ccoe
*l B (2.89)
A + ZlO B + CZlcose i + D

Z1 oe 1

One additional parameter of interest is the insertion phase delay
(IPD) which is defined as the phase of Et minus the phase of Eo at

0 miu h hs fE0 a

(O,O,d), when the slab is removed. This is the additional phase shift

introduced by the presence of the slab. The IPD for parallel polariza-

tion is given by

IPDII =-,/ II" Re{ki} d cosei (2.90)

Transmission and reflection coefficients for perpendicular polari-

zation can be easily obtained from the above by duality. The symmetry

of the electromagnetic field equations permits the following substituticus I

I
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to be made in any equation to obtain a dual equation: H replaces E,

-E replaces H and Z-l replaces Z. These and other duals are listed

in many electromagnetic texts such as [36]. As seen in Figure 2-13(a)

and (b), these substitutions transform parallel polarization to perpen-

dicular polarization.

The ABCD matrix that relates tangential field components at the

slab boundaries becomes,

HtN [A B] [Ht (N+I)]

I-I I I(2.91)
Etrij C D [-Et (N+l)_

where,
A B cosh(jp) Z2
S ]= Z2 sinh(jo n (2.92)

Scose 2  cosh(j)

and p is still given by (2.79).

The dual of (2.85) is

cose. coseH i  A B Ht coset
= (2.93)

Zl H C D Ht

and can be used to find the transmission and reflection coefficients.

The perpendicular polarization transmission coefficient, T , is

now found from,

Ht
T " (2.94)
± IH

0
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Wi n

(a) Parallel polarization

(b) Dual of (a)

-i

-i n

(c) Perpendicular polarization

Figure 2-12. Reference Polarization
Directions.
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and is given by,

2 (2.95)
A cose- Z

The perpendicular polarization reflection coefficient, r,, is

defined as,

- r

r± = - (2.96)
H0

and is given by B Z
-A ~--+ +D-A cose i  Z1  D

= 1 (2.97)r-L B Z1  C cose i
A + - + + 0cose i  Z1I

The minus sign in (2.96) is chosen to conform to the reference direc-

tions of Figure 2-12(c) in order to make T11 = T at normal incidence.

The insertion phase delay for perpendicular polarization is found

by substituting TI for T1l in (2.90).

Practical radomes are usually constructed of several different

materials arranged in laminated layers in order to achieve design

goals for strength, weight, rain erosion resistance, etc. The above

formulation permits the quick calculation of transmission and reflec-

tion coefficients for multiple layered slabs. Recall that the ABCD

matrix related the tangential fields at opposite sides of a homoge-

nous layer. When several layers are present the "output" fields of

one layer become the "input" fields to the next layer. Thus by

cascading the transfer matrices for each layer the overall transmission

I
rI
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and reflection properties of sandwiched layers can be determined.

The system transfer matrix is given by

I B [A A2 B2:} -AN[ (2.98)
CV D] 1- O LC2  C -__ N N

where N layers are present and the terms are given by (2.82) or (2.92)

depending on the polarization. Transmission and reflection coeffi-

cient are given by the same formulas with the ABCD parameters deter-

mined from (2.98). Subroutine TRANS listed in the appendix computes

the transmission and reflection coefficients used to model radome

walls in this study.

Radomes with high transmission coefficients are desirable in most

applications. A lossless planar slab can be designed to have a trans-

mission coefficient with a magnitude of one for a particular angle of

incidence. This is seen for a single-layer slab by examining the denom-

inators of the transmission coefficient expressions (2.87) and (2.95).

When the slab material is lassless, * is purely real and these denomi-

nators will equal 2 whenever w = n, with n an integer. For a slab

constructed of a given material this is achieved by making the thickness

of the slab, d, according to

nX

d = ' , (2.99)21:lrcr - sin ei]

where Xo is the free-space wavelength; pr and er are the relative perme-

ability and permittivity of the slab respectively; and (2.76) has been



56

used to write cose 2 in terms of sine i, the incident angle. For normal

incidence, (2.99) indicates that the slab thickness must be an i;itegral

number of half wavelengths in the slab for 100% transmission. How-

ever, the transmission coefficient for this case is unity only at

normal incidence and decreases as the incidence angle increases. Figure

2-13 shows the transmission coefficient of a half-wave-thick slab as a

function of incidence angle for both polarizations. Insertion phase

delay is also plotted. The reflection coefficients for this slab are

shown in Figure 2-14.

The incidence angles for the radomes in this study are quite large,

as will be shown in the next chapter and a slab designed for complete

transmission at an angle in the range of angles actually encountered

will make a better radome wall. Figure 2-15 shows the transmission

coefficients for a slab with a 750 design angle and Figure 2-16 con-

tains the reflection coefficient for the same slab. It should be

noted that the IPD of both polarizations are equal at the design

angle and the reflection coefficient vanishes at this angle.

PRINCIPLES OF RAY TRACING

This section discusses the application of ray tracing to obtain

electromagnetic fields that are transmitted or reflected by planar

dielectric slabs. The previous section dealt with infinite planar

slabs and tru, plane waves (infinite in extent). Ray tracing fits

this theory to finite structures.

The technique of ray tracing is based on the fact that all electro-

magnetic fields behave locally like plane waves whenever they interact
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with matter that is large with respect to wavelength, and has radii of

curvature large with respect to wavelength. Macroscopic materials have

these properties at optical frequencies, and ray tracing is frequently

used in the analysis of optical systems.

A ray is a directed line that is everywhere perpendicular to a

wave's surfaces of constant phase. Rays are in the direction of wave

propagation which is the direction of power flow or the Poynting vector.

When dealing with plane waves,:as in the previous section, it is easy to

visualize the wave traveling in the direction of the rays in the various

media.

Snell's transmission and reflection laws are used to predict the

directions of the "transmitted ray" and "reflected ray" whenever a ray

intersects a material discontinuity. Ray tracing of a transmitted ray

will be considered here first, and a discussion of ray reflection will

end this section.

Consider an arbitrarily polarized wave incident on a planar slab.

This wave can be decomposed into a sum of parallel and perpendicular

polarized waves as shown in Figure 2-17. The perpendicular component is

found by first forming a unit vector perpendicular to the plane of inci-

dence (plane containing the ray and the surface normal). This unit

vector, b, is often called a binormal vector and is found from,

-X;A

IrxnlIr x nj (2.100)

where r and n are unit vectors in the directions of the ray and surface

normal respectively as shown in Figure 2-17.
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The perpendicular component, El, of the incident electric field,

is found from the dot product as

EI=Ei .b (2.101)

Since the incident field is transverse to r, the parallel component of

the incident field can be found by vectorially subtracting the perpendic-

ular component from the total incident field or,

i - El , (2.102)

where Ell is the parallel polarized component of the incident field and

i is given by

-i
EI= (E1 . b)b (2.103)

Of course, the total field is now the superposition of the parallel

and perpendicular parts or,

E Ell + E. (2.104)

This decomposition is useful since a parallel polarized incident wave

produces only a parallel polarized reflected and transmitted wave. Like-

wise there is no cross-polarization for the perpendicular case.

The ray angle of incidence, 8i, is important since the transmission

and reflection coefficients are functions of this angle as shown in the

preceding section. The angle of incidence can be found from the vectors

and n by use of the dot product, or,

ei = cos "1 (-. • n) (2.105)
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The ray incident on the slab at angle 6i will enter the slab at

angle e2 given by Snell's refraction law, (2.76), and emerge on the op-

posite side again at angle e1. Although the transmitted ray exits at

the same angle as the incident ray, there is an offset between them

because e2 is less than ei for dielectric slabs in air. This offset is

indicated by d in Figure 2-17. The amount of this offset will depend on

the slab material, slab thickness, and the angle of incidence. Jenkins

and White [37] give the following expression for d produced by lossless

dielectric slabs,

r n cose.
d = t sine i  I - n, cose] (2.105)

where n and n1 are the indices of refraction of the immersing medium and

slab respectively, as given by u'r r for the appropriate medium.

Plots of d normalized to the slab thickness versus angle of inci-

dence are shown in Figure 2-18 for non-magnetic slabs with various

permittivities. It is noted that for intermediate values of dielectric

constant, as frequently encountered with radome materials, the deviation

is approximately linear with incidence angle.

In addition to the ray that initially emerges from the dielectric

slab, other rays will be transmitted after multiple reflection from the

interior slab boundaries. These rays exit periodically down the slab

and their enerqy diminishes geometrically with the number of interior

reflections. The transmission coefficients previously derived consider

all these reflections in order to satisfy the boundary conditions at the

interfaces.
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The approach taken in this work is to ignore th~e ray deviation pro-

duced by transmission and assume the incident ray continues linearly

through the slab. The radome walls under c~nsideration here have thick-

nesses on the order of one-quarter of a free-space wavelength and even

at the high incidence angles encountered, the ray deviation is approxi-

mately two-tenths of a wavelength. The error introduced by this assump-

tion is considered to be in line with other approximations made. Multi-

ple reflections are taken into account through the use of the transmis-

sion coefficients from the last section.

The transmitted electric field at a given point is found by consid-

ering an incident ray which would pass through the point with the slab

removed and then weighting the field of this ray with the appropriate

transmission coefficient, or in equation form,

t-i
EE lE T , (2.106)

with E and E are the previously derived parallel and perpendicular

components of the incident field, Ti and tl are the insertion transmis-

sion coefficients given by,

TfH = 1Ti1 exp (-j IPD11 ) , (2.107)

and

T± I IT.j exp (-j IPDL). (2.108)

Since the two transmission coefficients generally have magnitude

less than one and differ in both magnitude and phase, equation (2.106)
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indicates that the transmitted field is, in general, attenuated, phase

shifted, and depolarized. Furthermore each of these undesirable charac-

teristics is a function of incident angle. All these phenomena contrib-

ute to radome-induced radar pointing error.

Reflection may also be treated by ray tracing. Consider again a

plane wave incident on a dielectric slab as shown in Figure 2-19. The

incident field is composed of parallel and perpendicular components as

given by (2.102) and (2.103). The unit vector, r, is in the direction

of the incident ray and the unit vector, p, is in the direction of the

primary reflected ray.

According to Snell's reflection law, the angle of incidence, ei, is

equal to the angle of reflection, er. This results in the following

equation for finding the reflected ray vector, P:

p = r - 2(n - r) n (2.109)

where n is the outward unit surface normal.

As in the transmission case, additional rays emerge from the slab

due to multiple internal reflection as seen in Figure 2-19. Again for

the purpose of ray tracing these rays will be ignored; however, the

reflection coefficients used to find the magnitude and phase of the re-

flected ray take into account multiple reflection as discussed in the

previous section.

The perpendicular-polarized reflected field, Er, is given by

= r (2.110)
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where r. is the reflection coefficient for perpendicular polarization,

-i
E I is given by (2.103), and the expression is evaluated at the boundary.

The equation for the parallel polarized reflected field, El is not

as simple as (2.110). Recall that the reference direction for E71 was

chosen as shown in Figure 2-19 so that parallel and perpendicular

polarization would coincide at normal incidence. Eli must lie in the

plane of incidence and be normal to the direction of propagation. Thus,

there is no scalar constant which gives Ei when multiplied by

(except at normal and grazing incidence).

According to the reference directions of Figure 2-19, the tangential

components of the incident and reflected field are related by the reflec-

tion coefficient, but the normal components are related by the negative of

the transmission coefficient. The normal component of E is given by

E n (E * n) n (2.111)

and the tangential component can be found by subtraction as

-in ,(2.112)filt = 1 E ll ins

where n and t in the subscript indicates normal and tangential respective-

ly. The reflected components at the boundary are,

-r : l i
Iit r1 Elit . (2.113)

and

Er : r Ei (2.114)
lIn I I lIn

for the reference directions used here.



70

The total reflected field is the sum of (2.113) and (2.114) which

simplifies by substitution of (2.111) and (2.112) to,

E = r - 2(Ei' • n) n] (2.115)

This equation gives the magnitude, phase, and direction of the reflected

field at the interface.

As discussed in conjunction with the transmission problem, an inci-

dent field will, in general, have parallel and perpendicular field compo-

nents. The reflection coefficients for these two polarization states

differ in magnitude and phase. Thus, as was the case with transmission,

the fields reflected from a planar dielectric slab will be attenuated,

phase shifted and depolarized. One might hastily conclude that these

effects must degrade radome performance, but it will be seen that indeed

any reflection from a radome wall is undesirable.

This chapter has discussed the basic elements used in radome analy-

sis. The following chapter will connect these elements to analyze radome

system performance.



III. RADOME-INDUCED RADAR

POINTING ERRORS

In this chapter the effect of an ogive radome on an incident uni-

form plane wave is considered. It will be shown that the radome causes

amplitude, phase and polarization distortion in the wave transmitted

through the radome. This distortion causes the radar inside the radome

to indicate erroneous pointing directions.

Two mechanisms for wavefront distortion are considered. The first

is due to the variation of the radome wall transmission coefficient with

incidence angle and the second is due to reflection of energy from the

interior of the radome wall. The methods for treating these sources of

distortion are based on techniques presented in Chapter II. Radar

response to wavefront distortion is obtained by integration of the inci-

dent wave over the radar antenna aperture.

This chapter begins with a short section discussing pointing error.

Sections on the two sources of wavefront distortion and the composite

effects of distortion follow. The chapter is concluded by considering

radar response to radome-induced wavefront distortion.

CONCEPT OF POINTING ERROR

Radar pointing error is the difference between the angle that a

radar indicats to a given target and the true angle to that target. A

similar term given by the Institute of Electrical and Electronics

Engineers (IEEE) is boresight error which is defined as "the angular

deviation of the electrical boresight of an antenna from its reference

71



72

boresight" [38]. Although the IEEE gives no definition for the word

"boresight", it obviously originated from the practice of using optical

instruments mounted on the antenna to calibrate the electrical output

of the radar with the mechanical position of the antenna.

Sources of radar pointing error may be broadly divided into two

categories: internal sources and external or environmental sources.

Internal sources of error refer to imperfections in the radar hardware

(or software) and would include amplitude and phase unbalance in signal

forming networks, noise in signal channels, nonlinearities, and quantiza-

tion errors. External sources of error are due to environmental factors

which would cause even a "perfect" radar to indicate an erroneous direc-

tion to the radar target. Some external sources of error are glint,

multipath, non-uniform propagation media, clutter, jamming, and of course

radomes. (A different point of view will be taken in the next chapter

where the radar and radome are considered a single system.)

As a simple example of how pointing error can arise consider a

uniform plane wave incident on a dielectric prism as illustrated in

Figure 3-1(a), According to the familiar principles of the prism, the

waves entering and leaving the prism are in different directions due to

the unequal optical path lengths of the rays through different parts of

the prism. A radar measuring the direction to the source of the wave

leaving the prism will indicate that the source is located in the direc-

tion perpendicular to the wavefront at the antenna as was discussed in

the previous chapter. The difference between the direction to the target

indicated by the radar and the true direction to the target is the point-

ing error.

" -,, , i ,, i il I NN iNI I I I I .. .... . ..... .. .. .... Il ... ..... .. .. .. .. .. .... .. .. .. ..
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(a). Plane wave incident on dielectric prism.
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(b). Plane wave incident on radome.

Figure 3-1. Two Illustrations of Wavefront Distortion.
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While this example may have no practical counterpart, it does

illustrate an environmental source of pointing error that behaves much

like the radoie. (This example is also sinilar to propagation through

a stratified atmosphere.)

The separation of colors when white light strikes an optical prism

illustrates still another property of environmental sources of pointing

error. Color separation is due to variation of the prism dielectric

constant with frequency. This causes the exit angle from the prism to

vary with frequency (color). For white light incident at a given angle,

the angle to the source, as indicated by an optical sensor behind the

prism, would depend on the frequency to which the sensor is sensitive.

All of the previously mentioned environmental sources of pointing error

are frequency dependent (some quite strongly).

As a preview to the remainder of the chapter, consider a uniform

plane wave incident on a radome as illustrated in Figure 3-1(b). As was

seen in the discussion of plane waves incident on planar dielectric

slabs, the wave transmitted through the radoie will have amplitude and

phase that varies with the angle between the radome surface normal and

the incident rays. Variation in the amplitude of the transmission

coefficient causes the transmitted wave to be non-uniform. Variation in

the phase (time delay) of the transmission coefficient causes the wave

to be non-planar.

Both of these forms of distortion lead to radar pointing error in

the monopulse radar which is designed to operate with uniform plane

waves incident at the antenna. Throughout this work it is assumed
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that radome-induced distortion is the only source of error present; that

is, all radar elements and other propagation considerations are assumed

to be ideal.

WAVEFRONT DISTORTION DUE TO TRANSMISSION

In the receiving formulation of the radar problem, the radar

response is calculated from the fields incident on the antenna aperture

and known characteristics of the antenna. A radome around the antenna

introduces distortion into the wave that is incident on the antenna.

The first distortion mechanism to be considered here treats the radome as

locally planar and modifies the incident wave with a transmission coeffi-

cient to obtain the transmitted wave. Ray tracing is then carried out

to account for propagation to the antenna aperture.

The radome and incident field are depicted in Figure 3-2. The

incident wave is regarded as being made up of parallel rays traveling

perpendicular to the wavefront. The radome is treated as being locally

flat in the region near the intersection of a ray and the radome surface.

This planar approximation to the radome surface is oriented to coin-

cide with the plane tangent to the radome surface at the ray-radome

intersection point, and the thickness of the planar slab approximation

is the same as the radome wall thickness at the intersection point.

The incidence angle, 81, for a given ray is determined by equation

(2.105). Parallel and perpendicular compoients of the incident field

are formed with respect to the plane of incidence as outlined in Chapter

II. The parallel and perpendicular components of the incident field are

then weighted by the appropriate plane wave transmission coefficients
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77

for the planar slab. These weighted fields now make up the field

transmitted to the radome interior.

The ray thus transmitted to the radome interior is traced, without

deviation, straight to the antenna aperture. This is, of course, an

approximation as was discussed in the previous chapter. The field over

the entire antenna aperture is obtained by considering each of the rays

in the incident wave that passes through the aperture. The appropriate

tangent plane approximation of the radome wall must be determined for

each ray, since the direction of the surface normal varies over the

radome. With this discription of the ray tracing procedure as back-

ground, a more explicit discription of the details is now given.

The tangent ogive has been previously discussed, and the same con-

ventions and notations will apply to the present discussion. The axis

of the ogive will be taken as the y-axis. The y coordinate of a point

on the ogive surface with x and z coordinates given by x and z is found

from,

y [ R2  + -W

(=x2 ( _2+R )2] , (3.1)

wherex-27 +z is recognized as the perpendicular distance from the

y-axis, and other variables are as defined for equation (2.44).

A separate coordinate system will be used for the antenna aperture.

The rectangular coordinate axes of this system are designated x', y',

and z', and the axis of the aperture is taken to be the y' axis. The

origin of the x'y'z' system will lie on the ogive axis. Figure 3-3

shows an outline of the ogive and the antenna aperture with their

respective coordinate axes.
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Figure 3-3. Outline of Tangent Ogive Radome with Ray To
Aperture Center.
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The origin of the aperture is translated with respect to the ogive

origin so that clearance with the missile body is achieved for large

aperture scan angles. The symbol yg is used for this translation.

The aperture can be rotated about its x' and z' axes to direct the

antenna in any direction ir the forward half-space. The order and

directions of these rotations are significant, and the convention adopted

here will be to rotate first about the x'-axis and then about the

z'-axis. Positive rotation will mean that the rotation of the primed

coordinate system with respect to the unprimed coordinate system is in

the direction that the fingers of the right-hand curl when the right

thumb is directed in the positive coordinate direction of the axis of

rotation. The symbol a will be used to denote the positive rotation

angle about the x'-axis, and a will denote the positive rotation angle

about the z'-axis. The angle a is shown in Figure 3-3 and a is zero.

It is important to be able to locate points with primed coordinates

in the unprimed coordinate system. The transformation that accomplishes

this is given by,

x Is -sine 0 X[ cosm sine cosa cosB -sina y' + yg (3.2)

sina sine sina cos$ cosa zi 0

Without loss of generality, the incident rays will be assumed to be

parallel to tkie yz-plane since the coordinate axes of the radome can

always be rotated to achieve this orientation due to the symmetry of

the radome. A rotation of the antenna aperture about its y'-axis would
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be necessary to consider waves incident on the aperture from arbitrary

directions, however, since the antenna does not have rotational sym-

metry due to its polarization and aperture 41lumination function.

Points on an incident ray obey the equation,

y = (z -z0 ) tan e + y 0 (3.3)

where y and z are coordinates on the ray, y0 and z are the y and z

coordinates respectively of some point on the ray, and e is the angle

of the ray as measured from the xz-plane (the same for all rays since

they are parallel) as shown in Figure 3-3 for a ray passing through the

aperture center. Of course, all z-coordinates on any particular ray

are the same.

In order to obtain the field over the antenna aperture, rays will

be traced to the intersection points of a rectangular grid over the

aperture. Suppose (Xas Ya' Za) is a point in the aperture expressed in

the primed coordinate system. The coordinates of (Xa, Ya' Za) in the

unprimed coordinate system are obtained by applying transformation (3.2).

The equation for the ray passing through (xa, Ya' Za) is given by (3.3)

with y0 and z0 being replaced by the appropriate transformed coordinates

(X as Yal Za)"

Next the intersection of the ray and the radome must be found. The

intersection point must satisfy the equation of the ray, (3.3), and the

equation of the ogive, (3.1). Simultaneous solution of these two equa-

tions results in finding the roots of a (rather messy) fourth-order equa-

tion. Since the x coordinate of the ray is constant, the intersection



81

point must have this x coordinate. Equation (3.1) thus reduces to a

function of one variable that expresses the height of the radome along

a slice parallel to the yz-plane as a function of z.

The intersection point is the point where the ray has the same

height as the ogive. This point is found numerically by a procedure

based on Mueller's method [39] for finding the roots of functions of one

variable. Subroutine INTRSC listed in the Appendix performs these

computations.

The incidence angle of the ray at the radome is found from a unit

vector along the ray and the unit vector normal to the radome at the

intersection point. The unit vector, a, pointing out of the radome at

the intersection point and along any incidence ray is given by,

= sine y + cosez . (3.4)

A method for finding the unit vector normal to the radome surface has

been previously discussed. Subroutine NORM listed in the Appendix makes

the calculations necessary to find this vector. The incident angle of

the ray is then given by,

ei = cos-  [a • n) , (3.5)

where ei is the incident angle, and n is the unit surface normal at

the intersection point.

The polarization of the incident wave is transverse to the direc-

tion of propagation since this field is a uniform plane wave. Two

principal polarization directions will be considered here. These

I

I
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polarization directions are defined with respect to the yz-plane and

form a basis to express an arbitrarily polarized incident field. An
incident field will be said to be TE polarized (for Transverse Electric)

if its electric field lies transverse to the yz-plane, that is in the

direction, for any incident angle e.

An incident field is TM polarized (for Transverse Magnetic) if its

electric field is parallel to the yz-plane for any incident direction.

Unit vectors in the directions of TE and TM polarized fields are given

by,

aTE =x (3.6)

for the TE field, and

aTM = cose y - sine z (3.7)

for the TM field, where e is the previously defined angle of the

incident rays. These unit vectors are indicated in Figure 3-3.

Any incident polarization can be expressed as a sum of TE and TM

components with appropriate amplitude and phase. Waves polarized in

only the TE or TM directions will first be considered. Later waves with

diagonal linear polarization and circular polarization are discussed.

The procedure for obtaining the fields transmitted through the

radome and directly incident on the aperture is summarized as follows.

Beginning at a point in the aperture with known aperture coordinates,

the radome coordinates of the point are found. Next a ray is con-

structed through the aperture point. The intersection of this ray with
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the radome wall is found numerically. At the ray-radome intersection

the radome wall is approximated by a planar slab, and the ray angle of

incidence is 4ound from the dot product of the unit surface normal and

a unit vector in the ray direction.

The incident field at the ray-radome intersection is decomposed

into parallel and perpendicular components with respect to the local

plane of incidence as prescribed by equations (2.101) and (2.102). The

transmitted field is then found by multiplying the incident field compo-

nents by the appropriate plane-wave transmission coefficients for the

planar slab approximation to the radome wall. The transmitted field,

Et, is given by

t = l T , (3.8)

where and El are the perpendicular and parallel components, respec-

tively, of the field incident at the aperture point in the absence of

the radome; and ) and ti, are the insertion transmission coefficients

for perpendicular and parallel polarization, respectively, as given by

(2.108) and (2.107).

It has been previously noted that fl and Tll are, generally,

unequal functions of incident angle. Because the radome surface is

curved the local ray incident angle will, in general, be different for

any two different rays. Thus, equation (3.8) indicates that the phase

and amplitude of the transmitted field will vary over the antenna aper-

ture. Furthermore, since the radome surface is curved, the parall--

and perpendicular components of the incident field will be different for

I
I
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different rays in the aperture. The above phenomena are summarized by

the expression: wavefront distortion due to transmission.

An example is presented to illustrate the ray-tracing technique.

The radome considered is a tangent ogive with length of 30X and a base0

diameter of 10 o for a fineness ratio of 3. The radome wall is taken to

be a lossless non-magnetic homogeneous dielectric with relative permit-

tivity of 4. The wall has a constant thickness of 0.2855x0 which is the

thickness of a planar slab designed for 100% transmission at an incidence

angle of 75*. The transmission curves for this dielectric were presented

in Figure 2-15. A design angle of 750 was selected since it is near the

mean of the actual ray incidence angles of a wave that is incident along

the axis of an ogive with fineness ratio of 3. Most of the rays in this

case are incident at angles ranging from 700 to 800.

Primary emphasis in this section will be placed on the phase of the

field over the antenna aperture. As can be seen from the transmission

curves, the amplitude of the transmission coefficients remain near unity

over the entire range of the angles encountered; however, the phase of

the transmission coefficients varies about 200 over this same range.

The amplitude of the field over the aperture is thus approximately con-

stant, but the phase is not. Since the monopulse radar indicates the

direction to the target as perpendicular to the weighted phase slope,

the phase of the fields incident on the aperture is of extreme impor-

tance.

As noted earlier, only linear polarization in the TE and TM direc-

tions will be considered initially and the phase of the incident field



85

across the antenna aperture will be found for a given polarization and

incidence angle. The slope of the phase-front across the aperture leads

to radar pointing errors and this phase front distortion varies with

incidence angle. Radar pointing errors have a corresponding angular

dependence. Thus, considerable insight into radome-induced radar

pointing error is provided by the phase front across the aperture.

Figures 3-4 through 3-8 contain the insertion phase delay for TE

polarized rays traced through the radome to the aperture, plotted as a

function of position in the aperture. This series of figures has a

progressively lower angle of incidence (e) with the incidence angle

noted on each figure. The small diagram in the upper-right-hand

corner of each figure is similar to Figure 3-3 and shows the incidence

angle for a ray to the aperture center as well as the coordinate axes.

Also indicated on the small figure is the polarization of the incident

field.

For each of these figures the aperture was rotated to be normal to

the incident rays. Thus, each figure can be considered as the phase front

of the distorted wave across the aperture when the antenna is adjusted

for zero pointing error.

The aperture used for these figures has a diameter of 8X and the

IPD of a ray is plotted above the base plane only for rays incident on

the aperture. The height of the antenna gimbal point above the radome

base (y in Figure 3-3) is 2Xo , and the small figure shows this to scale.
g 0

The grid spacing in this series of figures is xo/2.

Several attributes of these figures should be pointed out. First

the IPD is symmetric about the x' = 0 plane. This is due to the mirror
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symmetry of the radome and incident polarization about this plane. The

shadow of the radome tip is observed in Figure 3-4 as the point of mini-

mum phase deliy since the lowest angle of incidence occurs for the ray

passing through the tip. The phase front is observed to increase from

the center due to the increase in the angle of incidence of the corre-

sponding rays and the monotonic increase in the IPD with incidence angle

for this radome wall.

In Figure 3-5 the shadow of the radome tip is seen about midway

between the aperture center and edge as the point of minimum phase delay.

At 80° incidence the tip shadow has moved out of the aperture, but the

phase front is still observed to slope down toward that point. At the

lower angles of incidence the phase front is seen to have less variation

over the aperture because the incident rays are now passing through the

(relatively flatter) side of the radome.

Also it will be noted that as the incidence angle decreases the

average height of the IPD across the aperture decreases. Again this is

due to the monotonic variation of the IPD with incidence angle over the

range of angles encountered.

Next a TM polarized incident wave is considered. Figures 3-9

through 3-13 show the IPD for this polarization with all other parameters

as in Figures 3-4 through 3-8. Again the IPD is noted to be symmetric

about the x' = 0 plane due to the symmetry of the incident field and the

radome. At on-axis incidence TE and TM IPD differ only by a 900 rota-

tion about the y axis. However, at non-axial incidence the TE and TM

IPD are different. It will be seen later that radar pointing error can

be a strong finction of polarization at certain incidence angles.
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Figure 3-12. Insertion Phase Delay of TM Polarized Field
with 700 Incidence Angle.
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Another example will be considered to illustrate some additional

properties of wavefront distortion due to transmission. In the previous

example, it was noted that the insertion phase delay of the planar slab

designed for 100% transmission at 750 is a monotonic increasing function

of incidence angle over the range of angles encountered (less than 800).

This feature is responsible for the concave phase front over the aperture

at normal incidence. The effect of changing the wall thickness is now to

be considered.

In this example the radome wall is considered to be polyimide

quartz, a common material used for radome construction due to its good

mechanical and thermal properties along with good electrical character-

istics. Polyimide quartz is non-magnetic, has a relative permittivity

of about 3.2, and a loss tangent of about 0.008 at x-band. A wall

thickness was selected for a 600 design angle using equation (2.99)

and ignoring losses. The transmission coefficients for this wall are

shown in Figure 3-14.

The first thing that should be noted about these transmission

curves is that the magnitudes are not unity at the design angle. This is

due to the non-zero loss tangent of the material which prevents 100%

transmission. Next, the parallel polarization IPD is seen to be

increasing for angles up to about 820, but the perpendicular IPD

increases for angles up to only 750 and then begins to decrease. This

will be seen to have serious effects on phase front distortion and radar

pointing errors.

I
I
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The insertion phase delay through a radome constructed of this new

wall material, but with all other parameters as before, is presented for

the incidence angle e = 800. Figure 3-15 is for TE polarization and

Figure 3-16 is for TM polarization plotted as before. A striking

difference now exists between the two polarization states. The TE IPD

now has an average negative slope in the z' direction but the slope is

positive near the z' axis. The slope of the TM IPD is positive in the

z' direction.

Since the pointing direction indicated by the radar is related to

the slope of the phase front across the aperture, Figures 3-15 and 3-16

show that a reversal in the direction of pointing error can occur at a

given incidence angle due to a change in the polarization of the incident

field.

The large differences in the slopes of the phase fronts above are

due to the differences in the IPD of the planar slab for parallel and

perpendicular polarization. For minimum phase distortion the IPD of the

two polarizations should be nearly equal over the entire range of inci-

dence angles encountered. By this criterion the 750 design wall is

better than the 600 design wall for the tangent ogive radome with fine-

ness ratio of three. Radar pointing error curves confirm this.

So far, incident polarization states that are symmetrical about the

radome's x' = 0 plane have been presented. This symmetry is not present

for linear polarization in any but the pure TE or TM directions. Figure

3-17 illustrates what may be referred to as diagonal polarization for a

ray traced to the aperture center. The incident polarization in this

case has components in both the TE and TM directions.



100

x

zi

0Z

W-4

LLJ
LLJ3

C0

=0- xl
03

Figure 3-15. Insertion Phase Delay of TE Polarized Field Incident

at 800 on Polyimide Quartz Radome.



101

y aTM

4X

x

ZI

z
0z

W.(O

LLJ c

(D

LiJ

Figure 3-16. Insertion Phase Delay of TM Polarized Field Incident
at 800 on Polyimide Quartz Radome.



CLL

102

yx

Fiue31.Otieo agn O-iv Raom

aTE

:-

Figure 3-17. Outline of Tangent Ogive Radome

Showing Both Scan Angles and
the Polarization Angle.

i



103

A unit vector, aE, in the direction of the incident field can be

expressed as

E a cos(y) aTE + sin (y) a (3.9)

where y is the polarization angle as shown in Figure 3-17, and aTE and

aTM are the previously defined unit vectors in the TE and TM directions

respectively.

Since diagonal polarization is not symmetric with respect to the

x= 0 plane, there will be differences in the fields transmitted to the

x' > 0 and x' < 0 halves of the antenna aperture. The aperture is free

to rotate about its z' axis to track the incident field. (Figure 3-17

shows the aperture rotated through the angle B positively about the z'

axis.) Radar response to diagonal polarization will be a pointing error

in the a rotation direction as well as the previously mentioned pointing

error in the a rotation direction. These pointing errors are related to

the phase-front distortion in the x' and z' directions respectively.

To illustrate this phase-front distortion, the insertion phase delay

over the antenna aperture is plotted for the polyimide quartz wall for

several polarization angles. Figures 3-18, 3-19 and 3-20 show the phase

front for polarization angles of 22.50, 450 and 67.50 respectively.

This series of figures have the same parameters as were used in Figures

3-15 and 3-16. The polarization angle is noted on the small inset figure

as before.

This series of figures shows a continuous change in the phase front

from TE polarization, as was shown in Figure 3-15, to TM polarization as
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was shown in Figure 3-16. In fact, all of these figures may be taken

together to represent the transition from 0 polarization (pure TE) to

900 polarization (pure TM). Note also that the maximum average phase

slope in the x' direction appears at a polarization angle of 450.

The phase-front plots presented in this section provide considerable

insight into radome-induced radar pointing error. They will be referred

to when pointing errors are considered, but before doing this another

radome distortion mechanism is considered.

WAVEFRONT DISTORTION DUE TO INTERNAL REFLECTION

This section concerns the analysis of the electromagnetic energy

that arrives at the antenna aperture after passing through the radome

and being reflected from the interior of the radome wall a single time.

Ray tracing is used to account for propagation, and the radome wall is

approximated by planar dielectric slabs as before.

The geometry for internal reflection is illustrated in Figure 3-21.

A direct ray is again shown passing through the radome wall to the

aperture center. The second ray shown cannot enter the aperture

directly, but enters the aperture after being reflected from the inside

of the radome wall. The term internal reflection will be used to refer

to illumination of the aperture by rays that are reflected from the

interior of the radome wall.

Internal reflection contributes to racar pointing error and

increased antenna sidelvbe levels, because the internal reflected ener-

gy does not arrive at the aperture from the direction to the target.

L . _--1 -



108
Internal
Reflected

Y Ray

Direct
Ray

ni

n

-n
r

Aperture

-~z

Figure 3-21. Outline of Tangent Ogive Radome
Showing Internal Reflection.



1O9

The total field over the aperture is the superposition of the

direct and reflected fields. For this reason internal reflection is

sometimes referred to as the Lloyd's mirror effect due to its similarity

with an optical experiment in which an interference pattern is obtained

with a single light source by using the light direct from the source

and light reflected from a planar mirror [40].

It has also been pointed out that the internal reflection phenomena

is similar to holography [41]. Recall that holography involves recording

the interference pattern of a reference beam and an object beam. In the

radome case, the reference beam is the direct wave and the object beam

is the internal reflected wave. The two waves interfere over the aper-

ture which is analogous to the photographic plate used in optical holo-

graphy. Use of this concept may provide a powerful tool for optimizing

radome performance.

In this section, only the internal reflected field that is incident

on the aperture will be obtained. The total field in the aperture and

the radar response to internal reflection are considered in the follow-

ing sections. The beginning point is to obtain the field that is

incident on the inside wall. Note that internal reflection is impossible

for on-axis incidence. Thus, internal reflection need not be considered

until the incident field is far enough off axis to make ray reflection

into the aperture possible.

In this study, it was decided to consider only the internal reflect-

ed rays that enter and are reflected at points on opposite halves of

the radome. The reason for this can be seen by cnnsidering a ray that
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enters and reflects from the same side of the wall (ray entry and

reflection at points where z < 0 in Figure 3-21). Under this condition

the ray incidence angle is extremely high at the entry point. Since

the wall transmission coefficient is rapidly going to zero toward

grazing incidence, little energy can enter the radome at these angles.

It must be mentioned, however, that these are precisely the

conditions favorable for excitation of a surface wave on the radome.

Consideration of surface waves are beyond the scope of this analysis,

but some of their possible effects will be mentioned in the next section.

Under the conditions of opposite-wall transmission and reflection,

the shadow of the radome tip in the y = 0 plane lies outside the radome.

The angle at which this occurs is used in the computed calculations to

signal the possibility of internal reflection. When internal reflec-

tion is possible, the intersection of the ray and radome must be found

at two points: the transmission point and the reflection point.

The'ray-radome intersection points are found by the numerical

search procedure previously described. The transmission point is found

from the root of the ray-radome difference equation with z coordinate

between zero and the radome base radius. The reflection point is

associated with the root to the left of zero, and inside the radome as

shown in Figure 3-21. The radome generating parameters for the radome

interior surface are used in finding the re~lection point.

At the transmission point, the transmitted field is obtained from

the incident field in exactly the same manner as for a direct ray. That

is, the wall is modeled as a planar slab; the ray incidence angle is



found from the surface normal; the field is decomposed into parallel

and perpendicular components; the transmission coefficients are found

for the incident angle; and the transmittec field is given by the pro-

duct of the incident field and the transmiision coefficient. This

transmitted field becomes the incident field at the reflection point.

At the reflection point, the radome wall is again modeled as a

planar slab. The reflection coefficient and direction of the reflected

ray are of interest at this point. The reflection coefficient is a

function of incidence angle and polarization, thus these must be known.

The incidence angle is determined in the same manner as for a transiitted

ray; except now the inward unit vector normal to the radome wall is used.

The reflected field at the reflection point is obtained by decompos-

ing the incident field into parallel and perpendicular components and

then multiplying by the appropriate plane wave reflection coefficient.

This reflected field then becomes the incident field at the aperture

after propagation from the reflection point.

The reflected ray leaves the reflection point in the direction

predicted by Snell's reflection law. Equation (2.109) gives an expres-

sion for a unit vector in the direction of the reflected ray when the

vectors that apply to the present case are substituted.

Not all reflected rays will intersect the antenna aperture. Thus,

it is importart to know if a given ray will be incident on the aperture.

Indeed, there is no point in performing the above calculations for rays

that do not contribute to the radar response -- thus this condition is

checked first. The method used is to ignore all rays that
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reflect at points in back of the aperture and to ignore all rays that

intersect the aperture plane at points outside the aperture peri-

meter.

The point at which a reflected ray intersects the aperture is im-

portant, because it determines the value of the aperture illumination

function to be applied to that ray during aperture integration. The

distance from the ray reflection point to the aperture intersection

point is also important, because phase retardation occurs over this

distance. The method used to find these two quantities is described

; next.

Suppose (xr, Y z ) are the rectangular coordinates of a rayr r r
reflection point and c is a unit vector in the direction of the reflected

ray as obtained from the incident ray direction and the radume surface

normal by equation (2.109). The coordinates of a point (x, y, Z),

on the ray trajectory are given by,

x =c xs + xr, (3.10)

y =C ys + Yr (3.11)

z = czs + zr9 (3.12)

where s is the distance from (xr, Yr' Zr) to (x, y, z) and cx, Cy, cz

are the rectaigular components of c which are simply the direction

cosines of the ray. The problem is to find s such that (x, y, z) lies in

thte antenna aperture plane.

j
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The equation for the antenna aperture plane can be obtained in

radome coordinates by inverting the matrix in (3.2) and solving for

the points, y° = 0, since these points describe the aperture plane. The

y coordinate of the aperture plane is

y ta x - tan a z + y (3.13)

cosa Yg'

where a and a are the antenna rotation angles.

The distance, s, from the ray-reflection point to the ray-aperture

plane intersection point is obtained by substituting (3.10), (3.11), and

(3.12) into (3.13) and solving for s. This yields

tan tXrcTo"sa Yr " Zr a g (3.14)
s= tan B
ctn + Cy + c tanc±"x COS Z

The ray-aperture plane intersection point is obtained from (3.10), (3.11),

and (3.12).

Before considering some examples, the procedure for finding the

internally reflected field at the aperture is briefly summarized. The

process begins by tracing the incident ray through the radome. The

intersection points are found by a numerical technique. At the trans-

mission point the incident ray is modified by the transmission

coefficient. The transmitted ray becomes the incident ray at the

reflection poiuit on the opposite side of thE radome. At the reflection

point the ray is modified by the reflection coefficient and redirected

according to Snell's reflection law. The ray then travels to the
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antenna aperture. The phase of the internal reflected field at the

aperture is determined by the transmission and reflection coefficients

as well as the propagation distances involved.

A radome with constant wall thickness (designed for 100% trans-

mission at 750 incidence) will again be used for an example. The

transmission and reflection coefficients of this wall were presented

in Figures 2-15 and 2-16. The radome is a tangent ogive with the same

dimensions (length 30xo, base diameter 1 0 ,) used before, and the

antenna aperture has a radius of 4x,. Incident fields with TE and TM

polarization are considered.

In Figure 3-22 the magnitude of the internal reflected, TE polar-

ized field over the antenna aperture is shown for the incident angle,

e = 700. Recall that internal reflection does not occur for incidence

angles near axial. Seventy degrees (or 200 off axis) represents the

beginning of favorable conditions for internal reflection.

The magnitude of the incident field outside the radome is unity

in Figure 3-22 and all similar figures to follow. Thus, the neight

of the reflected field surface provides a comparison of the relative

magnitudes of the direct and reflected fields.

It should be noted in Figure 3-22 that the reflected field is

confined to the left-rear edge of the aperture. The reason for this is

apparent in F.gure 3-21 where it is seen that favorable conditions for

ray reflection exist only for rays to the left edge of the aperture at

high incidence angles. As the incidence angle decreases, the reflected

field spreads over the aperture.
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Figures 3-23 through 3-25 show the reflected field for incidence

angles beginning at 600 and decreasing in 100 increments. At 500

incidence, the reflected field covers the entire aperture. At incidence

angles less than 400 internal reflection is no longer possible because

the reflected rays either pass over the aperture cr intersect the

aperture from the rear. However, multiple internal reflection becomes

a possibility at these low incidence angles.

Figures 3-22 through 3-25 were made by considering a set of rays

spaced x./2 in a square grid perpendicular to the direction of propaga-

tion. Each ray was traced through the radome, reflected, and checked

for intersection with the rotated aperture. If a ray intersected the

aperture, the complex value of its vector components were associated

with the aperture grid point nearest the intersection point. Whenever

two or more rays intersected the aperture in the same grid cell, they

were coherently summed to produce the total fielO in that cell. Of

course, a given grid cell in the aperture might have several or no rays

intersecting it. The peaked appearance of some of these figures is a

result of the ray spacing. Use of a finer grid would tend to fill the

region between peaks.

The above approach is like considering the rays as centers of ray

tubes which direct the flow of energy. If two or more ray tubes inter-

sect at the alerture, the total field is tha coherent sum of the fields
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in each ray tube. The total field magnitude may take on any value from

zero to the sum of the individual ray magnitudes, depending on the

amplitude, phuse, and direction of the individual fields.

The left-rear edge of the aperture is seen to have a high reflected

field magnitude for all angles of incidence. This is due to a focusing

effect of the radome. The concave shape of the radome surface reflects

rays to this region and the path lengths are such that the fields there

interfere constructively.

Reflected fields for TM polarization are considered next. Figures

3-26 through 3-29 contain these data presented in the same manner as the

TE case. By comparing these figures with the corresponding figures for

the TE case, it is seen that the spatial distributions of these reflected

fields are the same (since this is determined by geometry alone), but }

the magnitudes are considerable less.

The difference in the TE and TM reflected field magnitudes can be

explained by the wall reflection coefficients and the polarization of

the field at the reflection surface. At the points favorable for ray

reflection, a TE polarized field is mostly perpendicularly polarized

with respect to the wall; while a TM polarized field is mostly paral-

lelly polarized. Upon-referring to the wall reflection coefficients

(Figure 2-6), one sees that the magnitude of the reflection coefficient

for perpendic'ilar polarization is larger tan that for parallel polari-

zation at the high incidence angles. This points out the need for a
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wall with a high transmission coeffient (low reflection coefficient)

at the ray reflection points as well as the transmission points.

This last point is further emphasized by considering the internal

reflection properties of the polyimide quartz radome introduced in the

last section. Recall that this wall was designed for 100% transmission

at 600 incidence, but the design goal is not achieved due to loss. The

reflection coefficients for this wall are given in Figure 3-30.

The magnitude of the internal reflected field over the aperture

will be presented as in the last example with no changes other than

the wall construction. Figure 3-31 shows the magnitude of the reflected

field for TE polarization and 70' incidence. Note that a different

scale is used for the magnitude and the peak is nearly ten times larger

than the peak in Figure 3-22. Recall that the incident field outside

the radome has magnitude of only one. The increased reflection coeffi-

cient of the wall together with the focusing effect have produced a

field with magnitude of about six at the aperture edge.

The internal reflected field at 600 incidence is shown in Figure

3-32 again for TE Polarization. This figure also shows higher field

magnitudes than the corresponding 750 wall case (Figure 3-23).

The 50' incidence angle case is shown in Figure 3-33. Comparison

with Figure 3-24 shows that the internal reflections are less than for

the case of Figure 3-24. This is because he incidence angle has now

decreased to values where the wall reflection coefficient is small.
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These last few figures indicate the reason why radome wall thick-

ness is frequently tapered in practice. By varying the wall thickness,

the radome can be made highly transparent ii the region that fields

enter and highly transparent in the areas that would contribute unwanted

reflections.

The effect of internal reflection on radar pointing error will be

presented after the next section which concerns the composite effects

of radome-induced wavefront distortion.

COMPOSITE WAVEFRONT DISTORTION

The previous two sections have considered two factors that produce

radome-induced wavefront distortion: transmission and internal reflec-

tion. The operating radome-radar system will have pointing errors due

to these two sources and several others all acting together to produce

a composite effect.

Primary emphasis in this study is placed on transmission and

internal'reflection; however, other factors may produce greater pointing

error in some systems or at certain angles in any system- In this

section some of the composite effects of transmission and internal

reflection are discussed. Also, some of the possible sources of radome-

induced pointing error that have been neglected in this study will be

mentioned.

A radome produces amplitude and phase Jistortion in the wave

transmitted directly through the radome to the antenna aperture.
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Furthermore, for scan angles sufficiently far off axis (greater than

about 148 for the tangent ogive with fineness ratio of three), the

aperture is also illuminated by internal reflected fields that do not

arrive from the general direction to the radar target. Both of these

sources of aperture illumination contribute to the radar response.

The principle of superposition is used to determine the total

incident field over the aperture. Thus the total field over the aper-

ture is the coherent, vector sum of the direct and reflected fields.

As such, the relative phase and direction of the fields are important

along with the field amplitudes.

At low scan angles, the internal reflected energy is incident only

at the edge of the aperture near the reflecting surface. This energy

arrives in phase from the various reflecting points, so a large

reflected-field amplitude is observed at the aperture.

At large scan angles, the internal reflected field spreads over

the entire aperture. There is rapid phase variation of the reflected

field over the aperture in this case because the arrival direction is

far off the antenna axis. Later it will be seen that the radar has

little response to these fields, since their sum over the aperture is

small.

In addition to the internal reflected field, other factors contri-

bute to the total field incident at an ape-ture in a real radome. One

such factor is tip scattering. Even if the radome wall is homogeneous,

the vertex of an ogive is a source of scattered energy. This phenomena,
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which is much like edge diffraction, is due to the discontinuity in

surface derivative at the vertex. Frequently a missile radome will

contain a metal or ceramic insert in the tip to reduce rain errosion

and improve strength. Such a tip insert can further enhance tip scat-

ter because of the material discontinuity at the tip. Also some mis-

sile radomes contain a Pitot tube at the tip which is another source

of unwanted scatter. Tne effects of any of these factors are diffi-

cult to estimate. Empirical investigation is likely to provide the

greatest rewards in this area. Indeed, even the canonical problem of

scatter from the vertex of a hollow dielectric cone has not been solved

completely.

Another way energy may arrive at the antenna aperture is via a

surface wave. A surface wave is a field that is bound to, and propa-

gates along, a material's surface. Such fields attenuate exponential-

ly away from the surface. Surface waves may be excited on a body by a

wave that is incident near grazing, such as is often the case for a

radome. Since the surface wave attenuates with distance away from the

surface, it is likely that any effect on the radar system would be due

to interaction with the edge of the antenna near the radome wall.

Additional scatterers inside the radome can contribute unwanted

fields to the receiver. Such scatterers could include the antenna

feed horn and supporting structure, tubing to Pitot tube, heating wires

for a radome de-icer, metal behind the antenna, etc. Any of these

items may contribute to distortion of the received wave.
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Multiple scattering between the radome internal wall, or the wall

and one of the above items, or between any two items mentioned above, or

between the antenna and any other item, or any combination of these,

may affect the received wave at the aperture.

In order to determine the radar response to all of the above

factors, and others not mentioned, it would be necessary to solve a set

of integral equations for the fields everywhere in and around the

radome, taking into account all of the matter present and enforcing

boundary conditions everywhere. Such equations are not likely to be

formulated in the near future and can not be solved for practical size

radomes because of the limitations of even the largest and fastest

computers. For this reason, high-frequency approximations have proved

most useful in radome analysis. They provide considerable insight into

the physical phenomena involved, and they will likely continue to be

used and improved.

Just as the case with antenna analysis and design, engineering

practice and simplifying approximations must be used in radome analysis

and design with systematic improvement being based on experiment.

Transmission aberrations and internal reflection are considered to be

the greatest source of radome-induced radar pointing error, but it

must always be remembered that the radar response is the composite

effect of many factors.
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RADAR RESPONSE TO WAVEFRONT DISTORTION

The effect of a tangent ogive radome on the performance of a

monopulse radar is considered in this section. Primary emphasis is

given to the most undesirable effect of the radome--radar pointing

error. Wavefront distortion produced by the radome has been discussed,

therefore this section begins by considering how monopulse signals are

obtained from the incident field at the antenna. Throughout this sec-

tion, reference is made to the aperture phase and amplitude plots of

earlier sections in order to relite the phenomena of wavefront distor-

tion to radar pointing error. The effects of various wall thicknesses,

aperture illumination functions, and polarizations are also compared.

In Chapter II the receiving properties of an aperture antenna were

discussed. It was assumed that a uniform plane wave was incident on

the aperture. The received signals were determined from the incident

field and equivalent currents representing the antenna by

means of the reciprocity theorem. The same procedure will now be used

to find the received signals when the antenna is enclosed by a radome.

As explained in Chapter II, the voltage at the terminals of an

aperture antenna, operating in the receive mode, is

V = (1 + cos e)C fA .

A 0 + Co ds, (3.15)

where a uniform plane wave with electric field intensity, T', is inci-

dent at the aperture; 8 is the angle between the normal to the antenna

aperture and the direction to the source of the incident field; _Js is

MES

4. moo
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the equivalent electric current for the antenna operating in the

transmitting mode; C is a complex constant; the integration is over the

antenna aperture; and V is either the sum or difference voltage, de-

pending on whether the equivalent currents used are for the sum or

difference pattern.

When radome-induced wavefront distortion is present, the incident

field at the aperture is not planar and the angle, e, in (3.15) becomes

meaningless. However, since the distorted wavefront is well behaved

Over the aperture, a local angle of incidence can be found. The

incident angle can then be brought inside the integration and considered

as a variable, yielding

V = C f (1 + cos e)Yi Js ds. (3.16)

A

In order to obtain numerical results, this integral is approximated

by a finite sum over the aperture with Ei determined by the previously

discussed ray tracing procedures. A rectangular grid of sample points

is used in the aperture to find the voltage produced by the direct

wave. This yields

N N

V = C- . (1 + cos emn)Ei * s(mAx',nAx') As, (3.17)

m=-N n=-N
with m2 + n2 < N2

where emn is the incident angle at the mn- h sample, the functional

dependence of i . is indicated, As is Ax'Ax; and N is given by

N = [D/(2Ax')] , (3.18)
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with D the aperture diameter, Ax' the sample point spacing, and the

brackets take the largest integer less than or equal to the quantity

inside.

The contribution of internal reflected energy to the sum and differ-

ence signals is determined from the reflected rays that intersect the

antenna aperture. As previously described, a set of regularly spaced

rays are traced through the radome, reflected, and traced to the aper-

ture plane. Those rays actually entering the aperture contribute to

the sum and difference signals according to

V = C F ( + cos xmn)Ei 
* 

5 (X',z) As , (3.19)

with (x')2 + (z)2 < D/2

where x'and zare the aperture coordinates of the ray-aperture intersec-

tion point, emn is the angle between the antenna normal and a reflected

ray, and the summation extends over all possible singly reflected rays.

The surface current density, J , above serves the dual role of

sampling the tangential component of the incident field (through the

dot product) and weighting the summation. The name, aperture illumina-

tion function, was given to the magnitude of is, and two examples'.were

presented in Chapter II: uniform and cosine taper. Radar pointing

error for these two aperture illumination functions will be compared

in the examples that follow.
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Throughout this section the receiving antenna is assumed to be

circular polarized. This is done so that the antenna will be sensitive

to incident fields with any linear polarization. Actual missile radar

systems may transmit and receive either linear or circular polarization,

but the field scattered by the target will, in general, have time-

varying polarization due to the complex geometry of the target. The

assumption of a circular-polarized receiving antenna is made in order to

compare the effects of various incident field polarizations.

A circular-polarized receiving antenna can be represented by an

equivalent surface current density that rotates at an angular velocity,

(the radian frequency of the fields), in the aperture plane. Jordan

and Balmain £421 describe how a rotating unit vector in the direction of

this current can be constructed. The rotating unit vector is composed

of two orthogonal vectors having quadrature time dependence with left

or right sense determined by their phase relationship (which vector

leads).

For the aperture antenna under discussion here, two suitable ortho-

gonal vectors in the aperture plane are i' and i' (see Figure 3-3).

These vectors are combined to produce the rotating unit vector in the

right-hand direction, ar9 as given by

: 1 - ji'), (3.20)

where propagation in the -y' direction (receiving) has been assumed.

The square root of two factor is necessary to normalize ar' that is
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make " = 1. Recall that one vector is conjugated when taking dotr r
products of complex vectors. (The "unit" vectors given by Jordan

and Balmain have not been normalized.)

The left-hand unit vector is simply the conjugate of (3.20). It

is not difficult to show that left and right circular polarizations are

orthogonal. Left-circular polarization will not be considered here.

The equivalent surface current density, Js for the aperture

antenna can now be written as

= g(r,) 'r' (3.21)

where g is the (scalar) aperture illumination function, either uniform

or cosine taper here.

A computer program was written to perform the numerical aperture

integration described in this section. The fields at the antenna are

calculated by ray tracing. The radome wall transmission and reflection

coefficients are calculated and stored at 30 intervals before any

aperture integrations are performed. Whenever a transmission or

reflection coefficient is required, the three closest stored values

are interpolated with a second-order polynomial to provide the desired

coefficient. This interpolation scheme was found to provide better

than five decimal-place accuracy, which is well within the accuracy of

other approximations used.

The complete program used for radome error calculation is listed

in the Appendix.
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This program has two options after monopulse signals have been

computed. The first is to reposition the antenna to the angles indi-

cated by the computed monopulse signals. Indicated errors are then

recomputed and the antenna repositioned according to the new indicated

angles. This procedure is repeated until the antenna is repositioned

less than a user-specified amount. Radar pointing error is then the

difference between the pointing angle of the antenna and the angle of

the incident field.

The second option is to define radar pointing error as the angle

indicated by the monopulse signal when the antenna has no pointing

error. This option was included in the program when it was discovered

that after the initial repositioning of the antenna according to the

first option, the next indicated errors were consistently zero within

numerical accuracy. Thus, both options provide the same results, but

the second requires only about half the computer run time. The pointing

errors .presented throughout this work are the indicated errors according

to the second option.

Some examples of radar pointing error are now considered. For

each of these examples, the radome is considered to be a tangent ogive

with constant wall thickness and fineness ratio of three. The radome

base diameter is lOxo and the antenna aperture diameter is 8A.. The

antenna gimbal point is 2X, above the radnme base plane (yg = 2X, in

Figure 3-3). All these conditions are the same as for previously

presented examples.
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The antenna aperture can be rotated in two orthogonal angular

directions: the a and B scan angles of Figure 3-17. Radar pointing

error for a given scan direction is definec' as the scan angle of the

antenna minus the scan angle of the incident wave. Pointing errors in

the a scan-angle direction are called in-plane pointing errors since

they are in the plane formed by the incident field direction and the

radome axis. Pointing errors in the B scan-angle direction are called

cross-plane pointing errors.

A radome with the wall design for 100% transmission at 750 is

considered first. The transmission and reflection coefficients for

this wall were given in Figures 2-15 and 2-16. The incident field is

polarized in the principal polarization directions, TE and TM, but

the right-hand circular component of these fields is detected at the

aperture.

The in-plane pointing error for this case is shown in Figure 3-34.

The aperture illuminiation function is uniform. Pointing error is shown

as a function of the a scan angle and the effect of including internal

reflection is illustrated. Note that internal reflection has no effect

on pointing error for scan angles up to about 140 since internal

reflection is not possible for these angles.

In the TM case, the internal reflected fields cause almost no

change in pointing error. But in the TE case, internal reflection

, causes a oscillation in the pointing error about the no-reflection

value. As was seen in Figures 3-22 through 3-29, TE polarization
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produces much larger reflections to the aperture than TM polarization.

The perturbation of the TE pointing error is thus related to the inter-

ference between this larger reflection and the direct wave.

It is also noted in Figure 3-34 that the pointing errors are nega-

tive for all scan angles (except TE at 00 to 60). This is due to the

slope of the phase front of the incident field at the aperture. As

was shown in Figure 3-5 through 3-8 and 3-10 through 3-13, the average

slope of the phase front over the aperture is positive in the z' direc-

tion when the aperture has zero pointing error. This means that the

aperture must scan in the negative a direction in order to become

aligned with the average phase slope, so the radar pointing error is

negative.

Next, consideration is given to the effects of substituting a

different wall design in the above example. The wall design for 600

incidence previously presented will be used. The transmission and

reflection coefficients for this wall were given in Figures 3-14 and

3-30. In-plane radar pointing error for this wall design, but with all

other parameters the same as for Figure 3-34, are presented in Figure

3-35.

Note the differences. Beginning with zero pointing error on

axis, the TE error curve increases while the TM error curve decreases.

Maximum error is larger and occurs at a lower scan angle than for the

75' wall design. It was shown in Figures 3-15 and 3-16 that for the 600

wall design and 10' scan angle, the average phase slope across the

-I
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aperture in the z' direction had different signs for TE and TM polariza-

tion. These different phase slopes lead to radar pointing errors in

different directions. This could have serious implications for the

tracking radar, since the indicated direction to the target could

change by a large amount simply because of a change in the incident

polarization.

The effect of internal reflection in Figure 3-35 again begins

at a scan angle of about 120. But now instead of causing a small per-

turbation on the no-reflection error curve, internal reflection causes

large deviations from this curve. TE polarization is again seen to have

the greater sensitivity to internal reflection effects. The large

reflected fields that illuminate the aperture, as seen in Figures 3-31,

are responsible for these large errors.

At large scan angles, say greater than 450, internal reflection

produces little effect on radar pointing error. As previously discussed,

the reflection surface becomes highly transparent at the larger scan

angles, thus less reflected energy is entering the aperture. Also at the

larger scan angles, the reflected field has several cycles of phase

variation over the aperture; thus, the integrated response to internal

reflection is smaller. This last effect is similar to the response to

a plane wave that enters the aperture through a side-lobe of the antenna

pattern.

The effect of the aperture illumination function on radome-induced

pointing error is considered next. In Chapter II it was noted that

uniform aperture illumination produces a far-field antenna pattern
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with a narrower main lobe than cosine tapered illumination, but higher

sidelobe levels are associated with uniform illumination. When receiv-

ing, the aperture illumlination function serves to weight the incident

fields during aperture integration.

In-plane radar pointing error for the two principle polarizations

and both aperture illuminations are shown in Figure 3-36 for the 750

wall design and in Figure 3-37 for the 600 wall design. Internal

reflection is included for both figLres. In each figure it is seen that

cosine taper reduces the effect of internal reflection. This is

because cosine taper reduces the contribution of fields near the aper-

ture edge to the aperture integration.

However, at low scan angles, the radar pointing error is greater

for the cosine-tapered illumination. This is thought to be due to the

effect of fields near the shadow of the radome tip. In this shadow

region the field is highly distorted because of the large variation of

incidence angle in the tip region. At low scan angles, the tip shadow

is near the aperture center (the region given highest weight by cosine

taper), thus the aperture is responding to the most distorted part of

the incident field.

So far, only polarization in the pure TE and TM directions has been

considered for the incident field. Radar response to a diagonal, linear-

ly-polarized incident field is now considered. Such a field has both TE

and TM components as given by equation (3.9). The polarization angle,

y, indicated in Figure 3-17 will be used as a parameter. Diagonal
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polarization leads to both in-plane and cross-plane radar pointing

errors, as would be expected from the phase-front plots presented

earlier.

In-plane radar pointing error versus scan angle, a, is shown in

Figure 3-38 for the 750 wall design and in Figure 3-39 for the 600

wall design. Error curves are plotted for the polarization angles

indicated. Uniform aperture illumination is used for both figures; and

the effect of internal reflection is included. In Figure 3-38, it is

seen that little variation in pointing error occurs as the polarization

is changed. This is due to the near-equal insertion phase delay of the

750 wall design for parallel and perpendicular polarization. Thus, the

phase delay in passing through the radome wall will be about the same

whatever the incident polarization.

Something very different happens with the 600 wall design. The

opposite-sign errors for TE polarization (-y = QO) and TM polarization

(Y = 900) have been pointed out. Pointing error is now observed to take

on intermediate values between these two as the polarization angle

changes. The phase front across the aperture for a=100 was shown in

Figures 3-15 through 3-20 for each of the linear polarization angles

considered. It is interesting to see how the phase slopes relate to

the radar pointing errors.

In addition to an average slope in the z' direction across the

aperture, diagonal polarization leads to an average slope in the x'
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direction. This average phase slope in the x' direction produces radar

pointing error in the 8 scan angle or cross-plane pointing error. Mono-

pulse signals are formed for the a scan direction in the same manner as

for the a scan direction. The tracking radar measures the angle to the

target in both the a and 8 directions simultaneously and repositions the

antenna to obtain zero indicated error signals in both angles.

The antenna has zero cross-plane error when B = 0 according to the

convention adopted for the incident field (see Figure 3-17). The cross-

plane pointing error is thus taken to be the a scan angle of the

antenna when the cross-plane monopulse signal is zero.

Cross-plane pointing error versus a scan angle is presented for

the two radomes previously used for examples. Figure 3-40 is for the

750 wall design and Figure 3-41 is for the 600 wall design. Note that

both radomes have zero error at a = 0, but the cross-plane error for the

750 wall design rises slow and almost monotonically, while that of the

600 wall design rises to a peak at about a = 100 and then decreases to

small errors past a = 300.

At first thought, it would seem that Figures 3-40 and 3-41 contain

mistakes since the cross-plane error is not zero for 0* and 900 polariza-

tion, the symmetrical polarization states. The aperture phase front

plots did show these fields as being symmetrical about x' = 0. But that

which was plotted in these figures was the component of the field at the

aperture with the same polarization as the incident field. Radome-

induced distortion has mirror symmetry about the x = 0 plane. A TE or

TM polarized antenna also has symmetry about the x' : 0 plane. However,

,I
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a TE polarized antenna would have no cross-plane error at any scan angle

when a TE polarized incident field is present; likewise a TM antenna has

no cross-plant! error when a TM field is incident.

The errors plotted in Figures 3-40 and 3-41 are for a right-hand

circular-polarized receiving antenna. The circular-polarized anten-

na does not have mirror symmnetry about the x' = 0 plane. Thus the

circular-polarized antenna does not have zero pointing error even

when symmnetrically distorted fields are present.

A circular-polarized antenna has been used here so that the same

antenna will receive all incident linear polarizations. If a linear-

polarized antenna were used, the received signal level would drop sub-

stantially for cross-polarized incident fields. The radar pointing

error due to a poor signal-to-noise ratio is likely to be much greater

than the radome-induced pointing errors.

Pointing error curves for incident fields having the same polariza-

tion as the receiving antenna (RHC) are shown in Figures 3-38 through

3-41. For this case, no cross-plane error is present (again due to

symmnetry considerations). Both Figures 3-40 and 3-41 show that the

pointing error for 0' polarization and 900 polarization are almost

equal and opposite. Since circular polarization is made up of equal

parts of these two polarizations, the net pointing error is zero.

It is also noted in the cross-plane error curves that maximum

error is for ;50 polarization at all scan angles. This is the polariza-

tion angle with maximum asymmetry.
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In this chapter some fundamental concepts have been applied to

obtain approximations for radome-induced distortion. Although the

approach takei has been quite simple, it provides good insight into

radome behavior. Throughout the chapter the relation of wavefront

distortion to pointing error was stressed. Several of the factors

necessary for a good radome have also been pointed out. Next, a tech-

nique to compensate for pointing error and some additional information

available from monopulse are considered.



IV. RADOME-INDUCED RADAR POINTING ERROR CORRECTION

In this last major chapter, an error compensation technique is

presented. The technique is easily implemented and should be quite

effective in the digital-computer-controlled radar systems of today and

the future. The second section of the chapter treats the relation of

the complex indicated angle and radome-induced wavefront distortion.

The relation of the complex indicated angle to some other sources of

distortion has been presented in the literature, but treatment of the

radome problem is thought to be new.

ERROR COMPENSATION

The concept of error compensation is very simple: if the error

characteristics of a system are known a priori as a function of system

parameters, then the error can be removed from the measured output to

yield an error-free measurement. Of course, a sufficiently simple

system is required so that each output can be uniquely associated with

a given input. This is the case for radome-induced radar pointing

errors.

The traditional approach to radome-induced error reduction is trial

and error. Beginning with a wall design optimized for other system

considerations (strength, errosion resistaice, thermal properties, etc.),

the pointing errors are then measured. Next the radome is "patched-up"

by applying layers of dielectric tape to parts of the radome interior.

The errors are measured again and the process is repeated until a con-

156
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figuration having acceptable error characteristics is found. It is

obvious that this procedure requires considerable experimental time

spent by very experienced personnel. All this adds up to high costs.

In 1976 Loyet [43) presented a scheme for digitally compensating an

angle tracking system for radome-induced error. The technique involves

measuring the error characteristics of the system only once. The

measured errors are then stored as a function of scan angle. In flight

the radar is allowed to track normally, but the angle sent to the guid--

ance computer is the actual angle of the antenna minus the pointing

error for that angle as obtained by interpolating the stored error

values.

There are several advantages of this technique over the traditional

method. The system need be measured only once, thus range time is saved.

No high-level expertise is required, as for patching The technique is

easy to implement with a microprocessor, which adds negligible weight

to the system and can be tucked away in any unused space. By increasing

the number of stored error values, the pointing error can be reduced to

arbitrarily low levels; while some error always remains due to patching.

The remainder of this section presents a compensation scheme based

on the error calculations of the previous chapter. An angle compensator

will be easier to implement if little error is already present; thus a

radome design having low initial error characteristics should be selected

as a starting point. For the example to bu considered here, the tangent

ogive with constant wall thickness designed for 750 incidence will be

used. The in-plane pointing error for this radome with the previously

used antenna were presented in Figure 3-38.
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Compensation for pointing error is accomplished by subtracting the

pointing error at a given scan angle from that scan angle to obtain a

new estimate of the target direction. The new estimate is given by,

a'=a - aes (4.1)

where a' is the new estimate of theca scan angle to the target, a is the

scan angle of the tracking null, and a e is the in-plane pointing error

at a.

The scan angle to the target takes on a continuous range of values,

but the errors can only be stored for a finite number of angles. To

obtain the error for an arbitrary scan angle some sort of interpolation

is necessary. Two methods suggested by Loyet for doing this are 1. to

fit a polynomial to the nearest data points and 2. to fit an analytic

expression to the entire set of data. The approach taken here is to

simply perform linear interpolation between the nearest two data points

to obtain a value for a e. A scheme using second-order interpolation

of the three nearest data points was found to offer no significant

improvement.

The in-plane pointing error curve for 450 polarization was selected

for the reference error curve. As seen in Figure 3-38, this error curve

is near the average overall polarization angles. Reference data was

stored for 60 increments beginning at a = 0. Figure 4-1 shows the error

in a' obtaineJ by (4.1) as outlined above. This figure should be

compared with the original error curve, Figure 3-38. The difference in

ordinate scales is over six.
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Again error curves are shown for five polarization directions (y in

Figure 2-17). The error for 450 polarization is zero every 60, and the

other curves are generally on opposite sides of the 450 curve depending

on whether y is mare or less than 450*

The new pointing errors are smaller than the original at all scan

angles except near zero where the compensation scheme actually increases

the error. This is because linear interpolation of the error between

0* and 60 gives a negative error curve, while the actual error is posi-

tive. A better interpolation scheme might begin at a = 4' and not

apply error correction to angles less than 40. Details such as this

would need to be worked out for an actual system. This example is

presented only to illustrate the method.

Another benefit of the error compensator is that the residual

error curve is more rapidly varying and noise-like. This actually

improves the system performance. Recall that one of the primary func-

tions of the radar is to provide angle time-rate of change to the guid-

ance com puter. In the tracking scenario, the target is initially far

off axis and moves toward the axis throughout the flight.

When the slope of the error curve is positive the radar will

over estimate the angle rate of the target. Oscillatory flight charac-

teristics may result as the missile trajectory is changed to intercept

what appears to be a target with a high angle rate. When the error slope

is negative, the target's angle rate is undEr estimated. This results

in a sluggish missile response to target motion. Thus, the uncorrected

system will over estimate the angle rate at the beginning of flight,

while near the end of flight the rate will be under estimated.



161

Kuehne and Yost [44] have shown through computer simulation of

missile flights that greatest accuracy is achieved when the radar

pointing error changes slope frequently. Under these conditions,

periods of target-angle-rate over estimation are rapidly followed by

periods of under estimation and vice-versa. Filtering by the guidance

loop and missile dynamics can reduce the effects of this type error.

Thus the error tends to average to zero instead of having effects that

accumulate with time.

The simple error correction technique presented here has great

promise and should receive further attention in both system simulation

studies and experimental verification.

This section will conclude with some comments on cross-plane errors.

Cross-plane errors result from asymmetry in polarization and aperture

illumination function. After the above discussion of in-plane error

correction, the next question is logically--can the same thing be done

for cross-plane errors?

Recall from the cross-plane error curves, Figures 3-40 and 3-41,

that at a given a-scan angle the error is a function of polarization

angle (y in Figure 3-17). The cross-plane error is a zero-mean function

of y at any fixed scan angle. It can be shown that the cross-plane

error curve versus y has half-wave symmetry with period, n, that is,

Oe(y) = -se (y + n/2), (4.2)

where a e is the cross-plane error, y is the polarization angle, and a

is fixed. This is for a linear-polarized incident field and a circular-
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polarized receiving antenna. For a linear-polarized receiving antenna

the cross-plane error would be odd.

If the polarization of the received wave were linear with a rapidly

changing radome direction with zero mean, the cross-plane error indicated

by the radar would be zero. Also if the received wave were same-sense

circular polarized there would be no cross-plane error, as seen before.

Further consideration of the cross-plane error problem must be coupled

with some knowledge of the scattering properties of the target.

As a last comment, it is noted that a very "smart" radar system

could resolve the polarization of the incident field by use of a dual

Polarized antenna and necessary signal processing. Having determined

this, error correction could be made as outlined before.

COMPLEX INDICATED ANGLE AND WAVEFRONT DISTORTION

In this section, a somewhat more general measure of radar pointing

angle is discussed. This measure is known as the complex indicated angle

(CA). In Chapter II, the incidence angle of a plane wave impinging on a

radar antenna was determined from the ratio of the sum and difference

output voltages by

e =K_1 Re ,j (4.3)

where e is the incidence angle measured from boresight, K is the slope of

the normalized difference pattern at boresijht, and A and z are the dif-

ference and sum voltages respectively. (see (2.40)1
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The real operator (Re) in (4.3) is not necessary when a plane wave

is incident on the antenna, since it was shown in Chapter II that A and

z are in phase quadrature in this case. However, when the incident field

is not a plane wave, the phase of A and z generally differs by some-

thing other than 900. In this case, the angle indicated by the radar

may be considered as the complex quantity,

CA = K~l [z 44

Since a complex indicated angle is due to a non-planar wave at the antenna,

the term "direction to the target" may have no meaning. However, the real

and imaginary parts of the CA are due to specific attributes of the in-

cident wave and, therefore, do provide information about the incident

field.

Sherman [45] was the first to study the complex indicated angle.

This work considered a distorted wave at the antenna due to the inter-

ference of two far-field targets with different amplitude, phase and

direction. He showed that by processing the CA from several radar re-

turns, the direction to each of the two targets could be determined

although the targets were unresolvable with an ordinary monopulse radar.

Sherman [46] further extended the theory of the CA to include the effects

of multipath providing the second target return signal.

Peebles and Goldman [47] also considered the CA method for targets

with multipath by examining the effects of the terrain surface reflecticn

coefficient and system noise. They showed that the CA method provides
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significant improvement in target location when the signal-to-noise

ratio is greater than 20dB and the surface is almost planar. Sub-

sequent experimental work [48] indicated that the assumption of a

planar terrain was a severe limitation to the CA method for multipath

because the roughness of the actual terrain led to diffuse scattering

which caused ambiguities in the locations of the target and image.

To see how the complex angle method works for two targets or a

target and its image over a planar terrain, consider two unequal am-

plitude plane waves incident on a monopulse antenna near boresight at

angles eI and e2 as measured from boresight. By the principle of super-

position, the total sum and difference output voltages are the super-

position of the voltages produced by the two plane waves acting alone.

Thus, the complex angle is

CA = KJ1 -JA lA
[1 +E2

where subscripts identify the source of the signals.

Since the signals arrive from near boresight, the difference

voltages may be written in terms of the sum voltages and the angles of

arrival by the use of (2.40).

This yields,

CA= K' Ll + 2=] (4.6)
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Dividing numerator and denominator of (4.6) by E1 simplifies the ex-

pression for CA to

C = K -1 (4.7)I + a exp (j,)

where z2/E I has been expressed as an exp (jo). This is the general form

for the complex angle produced by two plane waves.

Several things are to be noted about CA. First, if signal 2 van-

ishes, (a=O) then the radar indicates the direction to the source of 1,

91. Likewise if I vanishes, the indicated angle is in the direction of

source 2. However, if both signals are present, the CA is truly complex

and CA depends on the ratio of amplitudes and the phase difference as well

as the angles of arrival. The real part of CA is no longer an indicator

of the direction of arrival of either wave and in fact, it may indicate

the "source" to be well outside the angular region subtended by the two

targets, a fact confirmed by glint and multipath studies.

The complex angle technique for resolution is based on the ob-

servation that the CA (4.7) is a bilinear transformation [49] of exp (jo).

Hence, as exp (jo) traces a circle in the complex plane as 0 varies

through 3600, the CA also traces a circle in the complex plane. The

radius of the CA circle is determined by the constant a.

The method proposed by Sherman was to display the CA on a properly

calibrated oscilloscope screen. Since the relative phase of the two

target returns, , will be rapidly varying due to the motion of the tar-

gets, the spot on the screen would trace a

circle. The constant a is then determined from the circle radius.
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Equation (4.7) could then be solved for 61 and 62 by decomposing the

complex equation into two real equations.

Althougf the above approach gives the mechanics of the complex

angle technique, it is only a signal analysis approach and gives little

insight into the structure of the fields that are incident on the aper-

ture. Radome-induced wavefront distortion is the source of a complex

indicated angle which is far more complicated than the two plane wave

case. In order to understand how this arises, it is necessary to begin

at the aperture.

To illustrate how the CA arises for radome distortion, the aperture

integrations used in Chapter III will be reduced to one dimension and

the incident field will be assumed to have only one vector component.

With these restrictions, the aperture integration (3.15) reduces to

_w f(x)g(x)dx, (4.8)
W

wJf (x)dx, (4.9)

where f(x) is the incident field; g(x) is the sum illumination function,

gd(x) is the difference illumination function, and 2w is the aperture

width. Recall that g must be even and gd must be odd. Also g and gd are

assumed to be real.

The incident field, f(x), is a comple: function and can be decom-

:)sed into the sum of even and odd functions according to

Jre + fie + ro + j (4.10)
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where subscripts e and 0 are for even and odd, subscripts r and i indicate

real and imaginary, and each f is real. The sum and difference signals

can be writtel as

Z r + j i  (4.11)

A = Ar + j&i  (4.12)

where
Zr =fre g dx, (4.13)

z :ffie g dx, (4.14)

Ar ffro gdx, (4.15)

Ai /fio gd dx, (4.16)

the limits of integration are as for (4.8) and full advantage has been

taken of the properties of even and odd functions integrated over sym-

metrical limits. The complex angle is now expressed by

CA - K-l Ai.jAr
Er +izi (4.17)

which can be rewritten as

CA = K 1 (ErAi-iAr)_J(iAi + E r A r )  (4.18)

2 +sr

Recall that in the case of the single off-axis plane wave the even and old

components ari in phase quadrature and (4.18) predicts a purely real CA.

Examination of the imaginary part of (4.18) reveals that CA becomes

complex when the sum and difference voltages are no longer in phase qua-

rature. This may arise in the case of two or more plane waves incident on
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the aperture or because of radome distortion. One of the goals of this

study has been to determine if the imaginary part of the CA would pro-

vide additional information that could be used to reduce radar pointing

error due to radomes. After examination of the simulation results of

the previous chapter, it was concluded that the imaginary part of CA could

not be uniquely related to radar pointing error but appeared to correlate

with phase front curvature. Thus, this quantity is not considered useful

for pointing error correction.



V. CONCLUSION

A high-frequency analysis of the tangent ogive radome has been

presented. Geometric optics has been used to account for propagation

of the electromagnetic field inside the radome that is due to a plane

wave incident on the exterior. Transmission and reflection of the

field at the radome surface was obtained by treating the wall and the

wave as locally planar and applying plane-wave transmission and reflec-

tion coefficients. The principles of monopulse radar were also re-

viewed.

It was shown that radar pointing error results from distortion in

Fthe incident field at the antenna. Such distortion is caused by the

transmission properties of the wall and by reflections from the wall

interior. Both these distortion mechanisms were seen to be functions

of incident angle and polarization. Pointing errors were found for both

scan planes of the antenna aperture. It was seen that asymmetry of the

incident polarization leads to cross-plane errors while in-plane errors

exist for any polarization state.

Complex angle processing for the purpose of pointing angle reduc-

tion was investigated based upon the simulation described above. It

was concluded that the complex angle could not be uniquely related to

radar pointirg error, but rather appeared -.o correlate with phase front

curvature. This quantity is not considered useful for pointing error

correction.

169
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A simple, but effective, method to compensate for pointing error

was demonstrated. This technique could be applied to any radome with

good results.

This analysis has considered some of the fundamental factors that

give insight into radome performance. Evaluation of the results pre-

sented can only be based on experiments that both validate and indicate

areas for improvement. Such experiments would certainly include com-

parisuns of this work with measured pointing errors and with plots of

the fields inside the radome. A very interesting area for future work,

both analytical and experimental, is the effect of the radome tip. Tip

effects may well account for many differences in measured and theoreti-

cal results.

'p'
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APPENDIX

This appendix contains a complete listing of the FORTRAN program

used to compute radome-induced radar pointing error. The program is

extensively documented and even a cursory reading of the comment cards

reveals much about the computations that are performed.

The program requires approximately three seconds for an IBM 370,

Model 155 to execute one aperture integration over an 8Xo diameter

aperture with x0 spaced rays, including reflected rays. Subroutine

RTMI, called by subroutine INTRSC, is contained in the IBM Scientific

Subroutine Package (SSP) [39] and, therefore, is not contained in this

listing.

The surface plots presented in Chapter IlII were generated by a

modified version of a plotting program presented by Watkins [50].
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MAIN 1I:

C THIS PROGRAM COMPUTES RtADAR P3!NTING ERROR
c FO)R A CIRCULAR POLARIZED A*VrEN4MA UNO-:R A
C TANGFNT OGIVF RADtOMS
c
C THE INCID'NT FIELD IS LINEAR PCLARIZED

RADkq POINTIN~G ERRO. IS CALCULATED FCR VARYING i
C ANGLIS Oc INCIDENCL AND POLAPIZATION DIRECTION

REOL ARG(9O),.ARRCA(90JERRRCB(901
R7AL CAAMP11O)CAMP2(9),C4PHS1(90ICAPHS2(9)I
CJMPL:X EXI EI"-l--Et-P~v P~FA9!AonA
CCMPL X TPFRoTPAP.RP'RRPAR.CtXP,CHPLXJ/ 0.1)
C3M'PL.EX SUM1,SUM6*0! kD!Fi3
CN.MPL7X -XToCYT.FZT,ETTIMFXR,L=YR,:ZR, -RTM
C.OMPLiZX PHdAS=-,c=XITE ',-'ITLK1T~ETMEYITM,'Z1TM
COCPLFX 9MAGlcAG2PHASR,CA4C-.5
CO2MPL --X ' WL9Z NSPN EPNiRH
REAL NXtYtNZMNOSF(3) ,Pl/.3141593--.1/
IN1 cGeR L4BFL(2)/'ALPH','BETA.'/
E OulVALFNCE (X P 9XM)(Z P *ZM ) 9(C DSA",Gv ZJ (S !AN G, AY

C
CJM'N/RDA'.4/ AL2vC, X42,TTHET~tRAD ,FR~
cf :~l-tl./m-,SFOqS/ X.A,YMZM
CO'4M: /4M-!GH-7/ APRotC#IMSRHiCAP
C '?MM1N / TH/ TH 1K

C
PHASJP.1X)=CMPLX(C)S(X).S'41N(X))

C.
POTP=PI/ ISO.
RTC-13J./Pl
SQRT 2=SQFT(2.0)

c INITIALIZ7 TRAASMIS!C C:OTOFICIFNT ARRAYS
CALL INI~T31)

C
C ALL DTMFASIJNS INJ M014 A: E N2RMALIlL, TO WAVmLSNGTH

C
C, PADO M c PARAMETSRS (OUTz-F S'JEFACE)
c RAO R NO]I M RADTIUS 4T B3ASZI
r, v P A 7-PM~ 016M',TEF. t 3AS3=

APZCJUT PADO'r G 4i?.4.T:;iG AqC
C F1N'lrSE RAZIM' H -I~ Ir

YG C :STAN~Cz Jr- GI"13.SL ?6!NT FRU14 BASE PLANC-

RC-Ct4D RA'0O12iK A%2 Ak F(N'JA P,4Rt=T7'S

THIS PAGE± 15 BL.SI
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20O, FORMAT(4F'0O)
RADl ,=RA:)-THIK
RA0I N2=RAD1N*RADIM

ARCQU(Tz( INHESS*F1 NESS .25)*o4

ARCI N=ARCCOUT-T HII(
C zARC OUT-R 0
HIGH4=SjT( (2. *RJuT-RA?)*RAD)

wRITE RADCME PARAM4ETERS
WRITE (69 105) W,HIGHoFINESS

1.05 FJPMIT(' 6,1RA00ME OArA'o/t 3tST~',F7s49/t

Of HEIGHT-s',F7.49/of F!N!%4NFSS RATI0=",F6.2t//)

C
RPifD CI)MPUTATICN OPTICNS
REAO)(5.2o12)r.NG.I%4S,I~POSMAXPNNAI:GEcIIF4Lt
#OFLAN'. CrLZ, 'RR'4AX

202 FOYATU12#511 ,3Xt3FlO.0)
APRA D2APD:IA /2.
DELXODELZ
NUlM LZ=APGIP.10 -LZ4 1.5
NUMFLX=NUMELZ
FI; STZll'r'LZ* Nulc4LtZZI
P4ONfl5F ( 1)= 1.028/( 1.617*4 101A)

ERRM i X=FAX*3TR

s IF IRrpos=1 AINTENNJA IS R3:PlSITIONED JNTIL R-:L(CAI<

C SRRMAXv *ND ERRODR IS GIm3AL AA~GL-INCIDaNT &'.GL7-

C IF IRtPOS:0 t.4TENNA IS NIT OPOSITIGNE 4ND :PFR]R IS

c REILICA) WHEN GIM13AL ANGLi" IS AT INCIDENT VIIGL-

00 700 !TSTMxltNf4GE

0.J 400O IA G=1..%iANG

c C.04PUTF e%\.GL: JF INCI)NfP viAl d-RC64'

WRIT!r(69IC4) %N;

PIS ACG IS BE.5T qJALtT'yF~TCL
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MAIN 3

104 FORMAT(' ','INCIDENT ANGLE=lvF6.2*IDrGREESI)
APG( IG 1=90.0-ANGI
ANG! =ANGI*DTR
TTHE TA= TAN IANG I

C
C COMPUTE O!RECTION COS1'4ES OF INCIDENT RAYS
C OUTWARD DIRECTION A5SU4E0 POSITIVE

AX=0.0
AY=SINI ANGI)
AZ=COS( PNGI J

FIN) DIFFCTION 3F UNIT AMPLITUDE INCIDENT E-r-IELD
C TF TO Y CASE: EXI=1.09 YI=0.0, EZI=0*0

C TM TO Y CASE: EXI=0*09 EYI=+C3S(ANGI)9 FZI=-SIN(A*4GII
EXITEO=1.0

rYIT40=C JS(ANGI)
EZITPO=-SIN(ANGI)

SET INITIAL POINTIlG ANGLE TC INCIDENT A4GLE
ALPHA=90.0*DTr -ANGI
RETA =0.0

D~2 300 Iv0INT=19MAXP1T

C0Sk LF=ClS (ALPHA)
SINALF=S PNIALPHA)
COSl -T=cos( B:TA)
SI N8F T= IN(Br~A)
TANALF=TAN (ALPHA)

C
C SUM4A AA4O CIFA ARE 43NOPULSE S!TGNfLS IN THE
C IN-PLANE CIRFCTIO11 (ALPH! SC."4 ANGLE,)

c SU'4B AND CIFS ATI MONOPULSrE SIGNALS IN THE
C CROSS-PLVI. CIRICTVflJ (9=-TA SCAN ANGLE)

SUMS =10.9O61

D!F9 =(00,001
C

: RCz.lRC!UT
AL2=ApCtiFC

C Pt:P.Fn'4 APERTJR_- 147:GRtTI2N :)F DIRECT F!LLD

ui 'U lSQjLiL i~I~AI
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MA IN 4

00 50 IX=INUMiELX
XMO= FIRSTZ-l lX-1 )*:)ELX

c (XM*YMoZ4) AR - RADOMF C ROI[MATES OF INTEGRATION POINT
c (XM400,,pZMO) !.PERTURE COOPOINATES OF INTEGRATION POINT
C

00 150 LI=l1.NUMELZ
ZMO=FIRSTZ-( Ll-lJ*DELZ

C
C CHFCK FOR M22SURE-MNT POINT OUTSIDE APERTURE

RHOAP=SQRT ( ZMO*ZM.3*XMO*XMO)
IF(RH.O5AP.GT.APRAD)GO TJ 150

c ROTATE ANTENNA SA'4PLE PCINTS FCR THE GI'4BAL;-O ANJTEINA
XM=C 'JSBET* XMO
YM=CPSLr-SI :T*kXMO-SINAL--*ZMO+YG
ZM=S INLr-SINB!-'T*XMO+COS dLr-*Zl~iQ

C FIND INTEFSF:TION OF RAY AND RADOMF
ZR1 =SQRT(RAD*RAD-XM*XMI
CALL 1INTRSC(XtY,Z.,ZM*ZR1)

C
C FIND SURFACE NORMAL AT PAY-FADCMS INTER$ECTIC'

CALL NII)R'( XYZNXvNYNZ)

C ~ ~ N DF-jI -NIETt~L OF fAY 'kT T=ANSMISSIJ!J PJINT

TH!tTAI=ARCOS( kY*NYt4Z*IZ)

c FIN) BINCRMAL
C B=(N X 4)/AES(N X A)

CALL CPOSS (N;X, %YoNZ90.09 YvAZ98X98Y,3Z)

c COMPUTE COMPLFX INCIDENT FIELDS AT ANTENNA
PHASE-=PHA SL.R(BE-TAK(*(Z'4AZ+VM"8! Y))

'xT=XITro*PHAS,
EYIT.'-="Y ITMO*PHAS'-L
'-ZITM=E -ZITMA0' PAS I

C
FXI=F-XtTc*lCl-NE
EYI=FYI Tt4ESV~JAAxJ

F P1NJ PI.RALLLL AIC v PNJ Ct F CDMP04 NTS
r. '.r ICIDVET F: =ILD AT 7RNNJS 4llS!C.YJ P--:%T

,P:X=RX*:Ml G.-



AO-AOA57263 AUBURN UNIV ALA ENGINEERING EXPERIMENT STATION F/ G17/q

INVESTIGATION OF COMPLEX ANGLE PROCESSING TO REnUCE RADOME NlU--ETC(IJ)

OCT 79 D G BURKS, E R GRAF DAAKAS 77-C 0022

UNCLASSIFIED) AUEE02231EE .....
I IEEE00000



180 .
MAIN5

EPFZ-BZ*cMAGl

EPAXuEXI-EPE.X
EPA Y=EY I-E PSY
E Pt Z a~L! -tPE Z

C FIND TRANSMISSION COFFFIC-I--NTS
CALL TRANST(THFTAItTPl-R9TPAR)

C
EXT -EP 0X*T P 5 + 6PA X*T A R
E Y = F P-Y *T PIR+ EPAYNTPAR
EZTs EP'PEZ*TPcR+EPAL*TPAR

C
C F1'40 TM COMPONENT OF T RANSMITTED RAY

E TTM- CO SANGIE Y T-S INANG 0E ZT
C
C COP-PUT%: RHC CCMPONENT %T ANTILNNA
C

EFGHr=( 2:XT-J*.sTTMI/SQRT2

SUA =SJmA+WSUM( ZmO *7-GHT
OIFAcDI FA+WVIF(ZM3*RGHT
SJ"B=S JME3+vS1VtXM))*r-GHT
DTF8=DIFl+wC'IF( Xf0i*'GHT

C
150 Z~INUF~
50 CVCNT I NUF

C
C WILL W4LL P=FLZ- TI.-NS BE C 'NS!EZRFO?

IF (IQ'--FL.I.F.1)G'l TO 2000
C
C CO4PUTATICN OF REFLE*CTICN CrA-A BEGINS H-!R
C
C CHECK 9(3R CPPOSITZ WALL 'R~f~iISSIIK-REL=CTIO:N

TIPSH')=A'rIN(Ht GH/RAD)
IF(ANGI.G,TIPSHfO)GC TO 2000

AL2=.ARf:ARC
ZFIRST=-!-F! X(HIGH/TTIH' -TA/DEL7 i*DELZ
XFTo0c?=-IFIX(RAD/DFLX)*n-iLX
PlUMXP=W/V)LX*J 95

AJU4Z P-Z !f ST/ O LZP+n .5

C ZP=ZI S7+UV~--1*rLZP

THIS PAGE IS BES Pn!aATIC-ASLEi
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MlAIN 6

C DO 1050 IXRo1,NJMXP
XPa~iFIRS1+( IXR1*OELX

C OFTFRMINE IF IXP,0*,ZP) IS INSIDE RAD)ME

IF(XPUXPZP*ZP*L.oRAD*RADIGO TO 1050

c
C DSTERMINS IF RAY CAN INTERSECT RADCM=-

IF(XPWAXP.GF.RADIN2)GC) TO 1050
IF(SORT(AL2-(C+ABS(XP))**2).LE,-ZPwTTHETA)GO TO 105

C FIND RAY REFLECTION POINT
ZLl=-SQRT( RAOIN2-XP*XP)
CALL INTRSC(XR..YR,I~vZL1,0.o)

C FIND OJTWARD NORMkL AT R=-FLECTION POINT

CALL N3RMi(XR,YR#ZRoNXttY,NZI
C
C FIND UNIT VECTOR IN DIRECTION OF PEFLE-T-50 RAY

CX=ADOTN2* NX
CYAl O:)TN2tNY-A Y
C Z =.IDTN~ N Z-1 Z

C
C DETFMINJF IF ANGLE OF INCIENC 39 REFL.CTE! RAY IS

G RE A T R' H t.N 90D. DE GR r-S A T "I %.A A P?--R J 1

c DIRECTIO04 OF INCIO-NT FIE~LD ASSUiJ4D FDO. AN444A "IJFMAL
IF(CY'!AY+A*'CZGTOD0IGO TO t.050

C
C FI'4C REFLECTED RAY-ANT'-:NNA t.PTURn PLAN E I14T[-RS:-CTI)0

C DIST IS REFLECTIOJN P0INT-INTriRSE7CT!ON POIN T -DISTA4Cz

DI ST=( VG-YR-ZR*TANALF) /(CY 1CZ*'AtJALFI
XSNC'CX*DI ST+XR
Y-=NCCYltoIST4Ylk
ZINOC=rZ*O!)ST+ZR

C
C DMTRMINW IF P4TEFSECTIOJb !S INS!DO .APIRT'JR-

IF(RHCIAPG -etPRAI GO TO 1050

C FIND PAY TPANSM4SSIM~ POINT

rk.LL INTISC (XT PYT ZT v0*CZR1)
C
r 0 clIUT. F;CDN IELD MAG-NITUDES

X! ?- 0 1r 0 0 0)' 1 SAW.-

1! =CMPLXV'-LIT A1o.).O) * I 4ANZ
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MA IN 71

C FI4D lNCIDrNCC ANGLE AT TRANSA41SSION POINT
CALL NlRM(XTtYT9ZT9ANXTt'%NYTvANZT)
ANGTRN-ARCOS (A Y*A AYT+A Z*AN ZT)

C
C FIND TRA14SMISS ION COEFFIC.I:ENT AT TRANSMISSI34 POW~J

CALL TRANSTIANGTRN9TPXERTPAR)
C
C FIND BINORmAL AT TRANSMISSION POINT

c BT=(ANT X A)/ABS(ANT X A$ 1
CALL CRO SS(ANXTANYTANZTOeOAYALBXTByTBZT)

C F14C PAR4LLElL AND PERPEIDICULAR CIMPONENTS .
C OF INCIOc-NT FIELD AT TRA.NSMISSION POINT
C *

EMAG I=BXT*E XI +BYT*EYI +6LT*EZI

EPEY=BYT*2'MAG1
EPE Z =ZTwU'*MAG I

C
EPAX=FXI--CPX
E-PAY=EYI-EPEY
EPAZ= :ZI-EPEZ

C
C #d2IGHT TRANSMITT7 FI:7LDS 41ITH !NStRTVJ'4 TRANSMI!SSICk.

Z COFFFfI,-NTS; TRANSPITTE-0 F!VLOS Brcom*iNZDN
C FIELDS 4T RaFLECTION POINT
C

EXI='P :X*TPFP+rPAXPTPpR
EYI=cP;Y*TPER+-PA Y*TPAR
c.iI=EP:Z'-TP R.EPA Z*TPA.R

C
C FIMD INJCIDENCE ANGLC AT REFLECTI01' POINT

AN'GP;-F=APCOS (-NY*AY-LZ* , Z)

C F14IO REFLZCTIPON CO)EFFICIENT iT RAY REFLECTION POINT
CALL TRANS(ANG4'-,PP-rRvRPAR)

C

FXIzl :XI*PHAS!

fc FIND 8vfV7.(?PkL AT R7-LZC-TICl-l P')INT
ir=(-jl X A)/tBs(-.i X A)
CALL CROSS t-t;X .-PY t-NiiO.Q 9,Y9 WtXRt BYP'., 3i'.)

gkilS FWAE IS Br31 QZUALITY FUC-TICA=L
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MA IN 8

C F1~4D PARALLEL AND PERPENDICULAR COMPONENTS
C OF 14C!OENT FI'SLD AT R:SFLECTI3N POINT
C.

EMAG2=BKR*rEXI+BYR*EYI ..BR*=-ZI
EPEXsBXR*EMAG2
FPEY=BYR*SMAG2
EPEZ-BZP *EMAG2

C.
EPAXzEXI-F PF X
EPAY=EYI-EPEY
EPA Z -E ZI-E PEZ

C,
C, FIND 43RMAL PIRT OF INCIDENT FIELD PARALLEL COMPONENT

EPAN?'L= PAX*NX+EPAY*NY+E PA Z*NZ
EPAN Xs P.ANML*NX
EPANY=E PANML*PlY
EPP.NZ=-- PANmL*NZ

C,
C WEIGHT REFLECTED FIELDS WITH REFLECTION CO!FFICI-EJTS

F.R',FXRl:kRA*S - .OWEPANX)
EYqu=-Pn-Y'*QPEP+RPAR*(:EPAY-2.,O*E=PANYI

c COMPJTP INCIDFNT FIELD AT APERTURE 8Y t.ZCOU1ITINGp FCR
PHASE SHIFT FPOY4 REcL9-CTION POINT
PHAS E=OHtS)F (-BETAK*LDIST)
FXR=CXR*PHASE

' YR=EYR*oHASf:
EZR=FZR*PHASF
ERTM=FYRmS INALF-t- ZR*COSA,'LF

C
C FIND RHC COMPCNENT CIF REFLECTED Fic-LD

C CnOMPUTF- '8LIQUITY FACTOR
OBLI Q=.,5-0*5*(AY*CY+jAl*CZ)
ZSNDuZ NO/COSA LF

WGHTDA=WOI F I Z''ND) * BL 1.
WGHTS~zWS!JM( X'-:Nl)*CeLIQ
WGHT Oz=WJI F (XF VD) 438L !G

SU9t =SJM'A'+LFGH'TtWGH.TSA
DIF~f. =C~l F:+:P-.GHT-v.GHr'-
SiJMB-&SIJ'd+i kG4,T*WGHrS5

1-J50 C INTrIA:.J-

'SHIS PAGI~: s 7 "'1. T
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MAIN 9

c
2000 CONTINUE

C
PRINT102,SUMA,SUMBDIFAv4'tIFB

102 FORMAT(l ','SUM~inS,2El5.6,5X,'SU'4B=',2E15.6,/
090 O!FAas%2E15.6,5XoOIFt~a 2E15.6)

C COMPUTE COMPLEX 1,4O1CATED ANGLES
CAi-4MCNOSFfIMS)*J*V'IF.A/SUMAb
CABu+MONJSF( IMS)*J*LlIFB/ SUMSB

C CAAMPfA=C8BS(CAA)*RT0

rCAMPB,= ABS(CA3)*RTO
CAPHSP.sATAN2(AIl4AG(CAAh9REL(CAA)*.TD
CAPHSB=ATAN2t1 IMAG(Z-AB) ,REAL(C 8) )*RTD

C
WRITE(6.'.081 C4AMPA9CAPHSA,CAeAMPC/.PHSB

108 FOR4AT(l l't'LPHA COMPLEX ANGLE - 721294,W 4TPF6.1,
NO DVGREFS19/.' BETA COM4PLEX AN4GLE =19E12*4t' AT',
#F6olo* CCGPFESS)

C
CAAMPI( I NG)=CAAMPA
CAAYP2( IANG)'CAAMPB
CAPHS1( IANG)=CAPHSA
CAPHS~IHINGI=C API-SB
ALFS RR=R--&L(CAA)
BETERR=RFAL(CA81
ACFGUALF':kR*RT)
BDFG=8B TclRR*RT:D
PRI14T1099AD' GtSDEG

109 CfFRMAT(I $#'ALPHA INCICATED 'r.FOR=S.P1O.6v'DXGDESI,/t
#I BSTA INCICATTEC ERR3R=*#Fl0.6,' 0EGIREFSt)

C
IFIIRE-PCSJ 750, 7509751

751 ALPHAmALlPHA+ALF2R7
SE-TA=B1-T %+8!i' Ra
!:IFOP.k=( %LPHA-PI/290+ANGI Ik*rD
F:ROf~r=B: ~mT
IF(ABS(ALFCR.LT RRAXAJD.A8S(BETERRI.LT.EPF.MAX)

#Gn1 TO 350
C

300 CrlT 1N',)S
GO TO 35')

C
75,1 FRRORAz~)CG

350 PN16FOP PIT

THIS PAGE IS BEST QUALITY FRACII.CA4lLR
CR4 ui Y v U-1i lizi) IL) C
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M4AIN 10

106 FORMAT(@ #,'ALPHA POINTING ElRoRs f',FS.,5,s DEGRSES't
0/1 BETA POINTING ERROR='.F8*5vl DEGREESt 08TANED I
*'AFTER '.1391 ITERATICNS'//)

c
ERRRCA( IANGI-FRRORA
ERRRCB( TANG) uE RRORB

C
400 CONTINUE

ANGEuiA'4G!:*R To
PRIN4T1O7*ANGE

107 FORMAT(' I*I.E A>GLEU'.vF6.3 9 Dl-GRt-S' I
C

CALL LPLOIT(ARGERRRCA.CAPHS1,NANGL.BEL(13,11
CALL LOLOT(#ARGECPqRCB,#C/.PHS2.NANGLABEL(2) .1)
C ALL LPLOT (AP G CAA P vCA PHS1 NANG LAEL ( 11)1)
CALL LPLOT(ARGoCAAMP tCAPH2NANGLA3L(2) 91)

700 CONTINUE
C

STOP
c ND

N)PM 17

SUBROUTINE NOFM(XvYtiNXtNYpNZ)
C
C THIS SUBROUTINE COMPUTES THME OUTWJARD SURFAC7

Rf AL NX9NY9NZ9NR
COMMOJN/RDATA/ AL2tCX'42tTTHET AtRADARC

C
XnXec.e20
lZ-+lo.:-20
R=SQRT(X*X+ZtZ)
NY-V /'AC
NRmE OPT( 1.-I1Y*NY)
N XX /ft-N R
-NZsZ/R-*PR
R cTU7I1

F4 ND
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INTRSC 11

SUBROUTINE INTRSC(X#Y,Z,XLI,XRII
C THIS SUBROUTIN! COMPUTES T , RAY-RADOME INTERSECTION
C POINT, (X.Y.ZI, OF A PAY PASSING THROUGH THS POINT,
C (XMoYM*ZM)e AT TH~E SPHFRICAL ANGLE THETA
C WITH XL1<Z<XRI.
C

EXTERNAL FCT
DATA EPS/2-OE-4/
C'V4MON/R!)ATA/ AL2,CIX'4ZTTHETA,RAD ,ARC
COM,'wCN/MTSPCS/ XthtyMZM
XM2=XMWXI

C CHFCK FOR NORMAL INCIC:SNCc

c IF(ABS(TTHETA).GT.1-c-O3)Grj TC 90

C FPS IS MAXIMUM ERROR IN iAVELZ2NGTHS
CALL RTMI(R3OT,F,cCT, XLI ,XPI,EPS, 25,Z-cR;
Z=ROOT
ZXM

Y-SOrT(AL2-(SORT( XM2+Z*Z )+C)*t2)
IF(IC~oEQOlPc.TUPN
PRINT 20,IFR

23 FORMAT($ 9.'SUBROUTIN1 RTMI DILI PIOTr FINE) RAYI,
IieINTFqSECTI0N POI,'T#/,'P E,,pR r.30! IS I-zR= *,.12)
STCP

90 XzX'4

YZSQRkT(AL2-(SORT(XM2+Z*Z )+C)-E#2)
RETURN

FCT 12

FUNCT13N FCT(Z)
C FCT !S !'4S CIFFfrPENC7 IN IEYCOCNT5JA
CPAY PtSSING THQ-UGH (XMYMZm) Ag-0 THE FbDOM-;
CSURF.AC!- AS A FUNCTIC14 OF Z

C14%1.J/Rf:AT~c/ tLiCXM9T' .:.RA",ARC
comm'jN/mcSpOs/ XM,Vm, jA

VkIS FA.z JS i
3 ULf RCICL
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KNIT 13

SUBROUTINS INIT(N)
C THIS SUBROUTINS INIT!ILIZCS THE MATRICES USED FOR

C TRDfISMISSION AND REFLFCTUGN COEFFICIENT INTERPOLATIONJ
c N EQUISPACED DATA POINTS ARE USED
C

COMPLEX ATPER(5O).ATPAR(5Oh9ARPER(501,ARPAR(501
REAL ANG(5Oh*PI/3*141593/
C')MPLFX 'rPFR.TPAPRPEPtRPA),PHA.SORCMPLX
COMMON/TIA!A/ATP -RATPAMRARPERtARPAR.ANGOIF0,D1I1
*OIF29OCLvMtO0OO
PHASOR(X)=CMPLX(COS(X) .SIN(X))

C
DEL= PI / 2o0 FLOAT (N-i)
01 10 Is1,N
ANG( II=OEtL*( I-I.)
CALL TRANS(ANG(I),TPECRTPAqARPER,(I),ARPAFtI),

#PrER!PD. PAR! PD I
C
C COMPUTS INSERT113N TRANSM4ISSION COEFFICIENTS

ATPER(I )=CABS(TPER)*PHAScIR(-PS-RI PD)
ATPARdII)=CABS(TPAR)*PHASOR (-PAR! PD)

10 CONTINIJ:
03w2 .Ottj'-L*DEL
01=-CSLtD2=L
0200O
M=N
RETURN
SND

WSUM 22

FUNCTION WSUM(ZMO)
C
C SUM WrIIGHTING FUNCTICN

REAL P1/3.141593/
COMAtCN /iFIGHT/ APRAD91MStq

C
C MS-1 UNIFCRM
C IMS=2 COSIN$: TAPER

C
GO) TO(10920).I4S

1a WSU4=1,0
RFTJiRN

21 WS(tY4mCJS(PI/2.*R/APRA0)

SND

2HIS PAGEi'J.
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WDlF 23 -

FUNCTION WOIF(ZMO)

c DIFFERENCE WEIGHTING FUNCTION
COMMON /WEIGHT/ APRAD*IMSP.
GO TO(1,?),IMS"o

C
I. WIFxZP4*2*O/tPRAD

RE TURN
C

2 WOI FaZM*0*93106/APRAD*W SUMI ZMO)
RETURN
END

TRANST 14

S USP rUTI ME TP ANST IAR G 9TPSR I TP AR!)
C THIS S~iJROUTINE TNTERPCLAr;:S THE TRtANSMISSION CAT
C SUPPLIFO qY INIT WITH A S~rc.N0 CROER CURVE THROUGH
C THS TH:-, CL0SE'ST DATA P'JINTS.

C COPPLEX ATPE-R(50),ATP8kR(5O),Aq-PER(50),ARPAR(50,

REAL A'G(5O)*AL(3)
COMPL!EX TPFPI9TPAPIsC4PLXtPHI S0R
COMQN/TCATA/ATPER.A'IAARP-RtAP., ANGDIFD.
#DIF1 .01F?9OEL .N*t0O ,DI ,D

I=APG/DEL+I.5

DIFl=ARG-ANG (I)
DIF2.ARG-ANG( I +1.)
ALOj)~~C2D
AL( 21=0TFflmD!F2/D.
ALM 3 )=co*0!F 1102

TOAF !=00o..O.3

"TPrik lrPRI +TPERI12..K 1dAL(K)
1J) TPAF I=TPA0 P+PPAP(4I-2.KJsAL(K)

P!-TUPN
END

~~1 3 BSEST QUALMT pUCTIC.JBLE
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TRANSR 15

SUBROlUTINE TRANSiR(ARGtRPER*RPAR)
C THIS SUBROUTINE INTFRPOLATES TH!-- REFLECTION DATA
C SUPPLIED BY INIT WITH A SECCNO ORDER CURVE.
C

COMPLEX ARPER(50),.AQPARt5O),RPERRPARATPER(50),
#ATPAR(5O)
REAL ANG(5019AL(3
COMM ON/T DATA/IATPER PAT PAR9A P-=RvAR PAR PAfNGv 0 -.
0DIF19DIF2vDELsNO9Dlv2

I -ARG/DL+. o 5
IF (I eE~o 1) 1=2
IF( I r-0,N) I N-1
DIF0=tRG-ANG( 1-1)
rO!F3. -ARG-4N.G(! )
C!F2uARG-ANG( I 41)
AL(l1)=OIFlwDIF2/DO
AL(2 )=CIFO'DlIF2-/DI
AL( 3 )urO FO*E)IF 1/02
RPER-(0.09,o.O
RPAR (0. 0. 90)
DO 10 '(=1,3
RPE-R=RPE-R+ARPFR( 1-24K )*AL( K)

10 RPAR=RPkR+tRPAR( 1-2+K).*AL( K
RETURN
E-ND

CROSS 16

SUBROUTINE CROSS (AX#AY PAZ,9BXtBYBZ tCXCY CZ)
C
c THIS SUBPOUTINE COMPUTFS THE N'JRMALIZEC CROSS
C PRODUCT OF A INTO B
C Cz(A X 8)/ABS(A X B)

CX=Ds Y*sz-aZ*By
CY=A Z*9X-A X348Z
CZ =A Xw3YAY
CMA ;=SQPT(CX-CXCYCY.CZc~CZ
C X=C X /C !MAG
C V-c / m AG
Cl=CZ/CM G
DetJ: T ji
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TRANS 18

SUBROUTIME TRtNS(TH--TATPERP,TPARAtRPSRPRPARA,
$PCERI PC'PARIPO)

C
C THIS SJBR3UTIN=- CJMPUTES COMPLEX TRANSMISS13N AND
C REFLFCTION COEFFICIENTrS FOR 4ULTIPLE-LAYERt
c SANDWICHED. PLANAR SH--ETS.

C ALL D0iF1NSIONED VARIABLSS HAVE BEEN DIMENSIOlNED FOR
C A MAXIMUM OF FIVE LAYERS*

O IMFNSICNS IN THIS SU3ROUTIN=- ARE IN METERS

C
C TPTPP C01MPL=-X P! RPENDICULAR TRANSMISSION COEFFICIENT
C TPARA COMPLEX PARALLE-L TRANSMISSION COEFFICI7NT
C RP7RP COMPLEHX P7RPSNOICULAP. REFLECTION COEFFICIENT
C RP'%RA COMhPLEX PA6RALLEL REFLE:CTION COEFFICIENT
C TH=TA ANGLE OF INCIDTNCZ
C NL NUMBER OF LAYERS SANC4ICH=-D TOGSTHERrC SETA PROPAGATION CCNSTAN4T IN AIR
C 4U PrFR4EABILITY OF LAY-zR R'-LATIVL- TO AIR3
r =PSILN DIFL'-=rTRIC CONSTtNT CF LAYEiR RCLATIVI TO j I R
C TNNDSP QICLFCTFIC LOSS Tl.N'GE' AT
C SIGM4A C INUCZNCE OF LAY=P.
C G % IMAI PP.:PAGAT!'JN CONSTAN4T
C YI PE AP PZ-RP-4ICULAR ADOIT T ANCE
C YIPtRA PAP5'LLFL A'OMITTANC7
IC H!K 'TH[CKNESS 0F LAYt-R;
C TorL TOTA L THICK'4ISS OF St,14CWICOHLD LAYCRE
C PFRIPD P -RPEKNDICUL.AR INSLERTION PHASE 0:LAY
C PARIP0 P?-FALLE-L INSERTropi PH,4,S: DELAY
C

COMPLFX Z.CLXPCSQRTtC)YJ/(0.O, !.0)/tCMPLX
CCMPL X TPEPtTPAPAK!-P.GAPMIYIPAkt-tYIP.-'RPt,-,F
CIMPLF.X APP,3PPCP,OPP, APR,BPRPCPRDPR, 'PRPRBPRPR
COMPLX CPRPP.,DPPP,APtFR, iP.CP:R,OPAR'
C)MPL-- G, H, teR~cRP ,RPARAt,CCOSH,CSI,4H
CIMPLcA AP-P(5),3PP(5), .P-RP(5),OPERP(5)
COMAPLFX %PAF.&(5) ,PtP-' (5).CPARA(5) ,DPi4R.(5)
D"vrNSICN KMU)(5) *KEP(51GAMI(5)tvIP "P()YIPARA(5)
oimcIsicN rPsILN(5i,LYN,(5) ,T-IK(51,MU(5),SI,'MA'( 5)
DIMATN!!CN TA'l0EP(5)viYy(5)
P-a-t. LAMA .U, Pl/3oI~l5Q3/,K!'J

!:QU Vt L "- "C '- i MiU 9 KM'J3

CCM'iCN / T H1TH I K L

CC- 5H(L)=(CcXP(Z).C:XP(-Z)/2.
CSU :Hji)=(CfXP(Zb-C XP(-Z))/2.
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TRANS 19

SINT=SIN(THIFTA)
COS"*C)S(T.E'rAl
SINT2-SI NTxSIMT

C
C CHECK IF CATA IS TO BE READ

IF(LFLAG.LE.0)G3 TO l00
c

500 00 22 I=19NL
GAMMAI(I)=J*3STt.*CSQRT(KMU(I)*KEP(II-SINT2)
YIP7RP(I)=CSQRT(KMU(I)*K P(I)-SINT2)/KMU(I)
YIPARA(I)=K[-P(I)/CSQRT(K'4U(I)*KEP(IJ-SINT2)
3DY(lI)=GA'YMAILI )*THIK (I)
AP'cRP (I) =CCOSH(DDY( I)
BPEFPII)=CSINHLDOY(Il/YIP:RP(I)
CPERP(I )=YIPERP(J t*CSINH(DDY(I) I
DPFRP(I )=AP :P(!)
APARA(I )=APFRP~l)
8PARA(!)=CSIN4H(JOY(I))/YIPARA(I)
CP&FA(T l PARAfl) *CS IqH(DCY( I))
DPARA( i, CPPM

22 CCNIfkjE
C

!F (NL.FQ.1IGO TO 25

APP=APSRPL 1)
OPP=BPr-RP( 1)
CPP=CP RP(1)
o0P~op'!P( 1)
APR=APAPA(l)
8PR=SP.A(l)
CPR=CP.RAC 1 )
DPR=OPARA( 1)

C
n0 35 !=2,NL
APRPR=APP'wAPERP(I I+SPP*CP.:RP(I)
BPI Pr't.Dp* BPP ' P( TI +SOP.*op'qp( I!
CPRPR=CPP*. PRP(I)+OPP*CP--P(!)

APRFAP*APRA(I)+BPRCpR(!)

CPA'.R=PPAPARt(',9P~IaPA~cp (I)
0PtRR=CPR*8PAPA(I I+CPR*'OPAA(II
APP=APIPP

rpp=cp-ipR
opp=rJFc pR
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TRANS 20

BPRu BPARR
C PR=C PA R P.
OPRu DPARR

35 CONTINUE
30 CONTINUF

C
E-A PRPR 4e2PRPR* CrST +CPR PR/C CST+D PRPR
FZAPARR+BPARR/COST4CPARR*COSTI+Dp&RR
TPARA-( 2.0.0.0)/F
TPEF P=(2*OO.O)1/r

G=APRPq+8PRPR*COST-CPP PR/C0S1r-DPF.PR

RPER P=G/H - P R * CS - P RS=AP ARR+SPARR/cosT~PR*0SrPR
T~tPA'IRBPAR/0ST+CP $RR~CLST4DPAPR

C RPAR A=S/Tr

PCCN 1=BTT-'A*T O'D*C )ST
PERIP(=-ATAN2(A IMAG(TPER P) ock A(TPERP) )-PCCN1
PAR! PD=-AT4N:-! AIM4AG(TPARA) 9R'-.L(TPArkt )-PCON41

53 'AF(PAPIPD.GE,!.0.4G7 TO 60
PAP! PC=P!IPO+z,*Pl
GO '3 50

6o0 !F (P 2RIP r,,G L-o0 o) R = URIN
PEP I P0 =P=F IPD+ 2,*P I
G3 TO 60

100 LFLAGI.

LAMDA=i .0'S09/FR=C

F 'ql~Tr-(se107) F:P=QG
1307 FOR JA eT '-PRAT ING F PFQ UE,4C Y I S *F 5,2, G HZ

RA)5, 112 1 L
112 FQI dAT(11)

00 12 t1=19fL

TT =7l'T!)gH:K( IA

SIC" A( I) YTV!0;-Ii I *P

L I Y- ~ _
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TRANS 21

3 FDRMAT(*09v3X,lLAYER NO* TI'KNr.SS MU EPSILONOP
of SIGMA LOSS TtNGENT *J

OTANOEP( I)
4 FORkMAT(' .5XI~,9XF7.5,t3XF5.3,3XF5.3t4Xt,:9e3,5X,

*E12e693X9F8o4)
KCPt I)=EPSILN( I)*(1.-J*TANDEP(I))

12 CONTINUE
THIK WL=TOQTILAMDA
WRITF(69 105)

105 FORMAT('1'i
GO TO 500

C
25 APRiPR=kPEPP(l)

8PRPR=8PERP(l1
CPFPR=CPC!Rpt 1)
OOF P PDP EP p( 1)I
APARR=APAPA(1)
3PA tRR=9P4R, ( 1)
CPAqR=CPARAI 1)
DPARP.=DPA.P(1)
GO TO 30

E NO

THS PAGE 15;-
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